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This talk split into two parts. First, the second author introduced basic prop-
erties of the universal group construction by Burger and Mozes, see Section 3.2
of [2]. Second, the first author described some variations of this construction by
Banks, Elder and Willis (see [1]) and explained how this construction can be used
to find infinitely many locally compact compactly generated non-discrete simple
subgroups of tree automorphisms.

Universal Groups. Let Td = (X,Y ) denote the d-regular tree (d ≥ 3) and let
l : Y → {1, . . . , d} be a legal labelling of Td. We adopt Serre’s conventions for
graph theory, see [4]. Given a vertex x ∈ X , every automorphism g ∈ Aut(Td)
induces a permutation at x given by c(g, x) := l|E(gx) ◦ g|E(x) ◦ l|

−1
E(x) ∈ Sd, where

E(x) := {y ∈ Y | o(y) = x}.

Definition 1. Let F ≤ Sd. Define U(F ) := {g ∈ Aut(Td) | ∀x ∈ X : c(g, x) ∈ F}.

The following proposition collects several basic properties of U(F ). Also, it
exemplifies the principle that properties of U(F ) should correspond to properties
of the finite permutation group F , which is part of the beauty of the construction.

Proposition 2. Let F ≤ Sd. Then the following statements hold.

(i) U(F ) is closed in Aut(Td).
(ii) U(F ) is locally permutation isomorphic to F .
(iii) U(F ) is vertex-transitive.
(iv) U(F ) is edge-transitive if and only if F is transitive.
(v) Given legal labellings l and l′ of Td, the groups U(l)(F ) and U(l′)(F ) are

conjugate in Aut(Td).

Furthermore, it is immediate from Definition 1 that U(F ) satisfies Tits’ Inde-
pendence Property. More precisely, we have the following.

Proposition 3. Let F ≤ Sd. Then U(F )+ is either trivial or simple. If F is
transitive and generated by its point stabilizers, then U(F )+ = U(F ) ∩ Aut(Td)

+

and hence U(F )+ ≤ U(F ) is of index two.

Here, U(F )+ := 〈{g ∈ U(F ) | ∃y ∈ Y : gy = y}〉 is the subgroup of U(F )
generated by edge-stabilizers. It is edge-transitive if and only if F is transitive
and generated by its point stabilizers.

Finally, the term “universal” is justified by the following result.

Proposition 4. Let G ≤ Aut(Td) be vertex-transitive and locally permutation iso-
morphic to a transitive permutation group F ≤ Sd. Then there is a legal labelling
l of Td such that G ≤ U(l)(F ).

Universal groups have come up in the theory of lattices in products of two trees,
see [3], but constitute interesting objects of study in themselves, too.
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k-closures and Property Pk. Let T denote an infinite and locally finite tree
(not necessarily regular) and B(x, n) the ball of radius n centred at vertex x of T .

Definition 5. Let G ≤ Aut(T ) and k ∈ N. The k-closure of G is

G(k) := {h ∈ Aut(T ) | ∀x ∈ X : ∃g ∈ G : h|B(x,k) = g|B(x,k)}.

That is, the automorphisms of T that agree on each ball of radius k with some
element of G.

In this setting, G is the analogue of F in the definition of U(F ), providing a list
of “allowed” actions. Notice also that G(k) is in some sense a “thicker” version of
U(F ) in that it has a prescribed local action on bigger balls (when k > 1).

Proposition 6. The k-closure of G has the following basic properties.

(i) G(k) is a closed subgroup of Aut(T ).
(ii) For every k, l ∈ N with l < k we have G ≤ G(l) ≤ G(k).
(iii)

⋂
k∈N

G(k) = G (the topological closure of G in Aut(T )).

Just as U(F ) satisfies Tits’ Independence Property (or Property P ), the k-
closure of G satisfies a “thicker” version of this property.

Definition 7. For any finite or (bi-)infinite path C in T and any n ∈ N let Cn be
the subtree of T spanned by all vertices at distance at most n from C.

Let G ≤ Aut(T ), k ∈ N and C be a finite or infinite path in T . Then, for
each vertex x of C, the point-wise stabilizer FixG(C

k−1) of Ck−1 in G acts on the
“subtree rooted at x” (the subtree of T whose vertices are closer to x than to any
other vertex of C) and we denote by Fx the permutation group induced by this
action. We therefore have a map Φ : FixG(C

k−1) →
∏

x∈C Fx which is clearly an
injective homomorphism.

We say that G satisfies Property Pk if for every finite or infinite path C the map
Φ is an isomorphism.

Notice that when k = 1 we recover the original Property P defined by Tits ([5]).

Proposition 8. Let G ≤ Aut(T ) and k ∈ N, then G(k) satisfies Property Pk.

It is almost immediate that this holds when C is an edge, whence it can easily
be extended to finite paths. That it holds for (bi-)infinite paths follows from a
limiting argument and the fact that G(k) is a closed subgroup of Aut(T ).

Satisfying Property Pk characterizes when the process of taking k-closures sta-
bilizes.

Theorem 9. The group G ≤ Aut(T ) satisfies Property Pk for some k if and only
if G(k) = G.

More importantly, we deduce the following which will be used when finding
infinitely many distinct simple subgroups.

Corollary 10. There are infinitely many distinct k-closures of G if and only if G
does not satisfy Property Pk for any k.
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To find simple subgroups we will use an analogous result to Tits’ theorem ([5,
Théorème 4.5]), with a similar proof. Let G+k := 〈FixG(e

k−1) | e ∈ Y 〉 denote the
subgroup of G generated by pointwise stabilizers of “(k − 1)-thick” edges.

Theorem 11. Suppose G ≤ Aut(T ) does not stabilize a proper non-empty subtree
or an end of T , and satisfies Property Pk. Then G+k is simple (or trivial).

We have the following recipe to find simple subgroups of Aut(T): start off
with some G ≤ Aut(T ) which does not stabilize a proper subtree of T , form its
k-closures (they all satisfy Property Pk), use Theorem 11 to obtain the simple
subgroups (G(k))+k . We still need to ensure that the latter subgroups are non-
discrete and different from each other, which will follow from the results below.

Lemma 12. If G ≤ Aut(T ) does not stabilize a proper subtree of T we have

(i) (G(k))+k is an open subgroup of G(k).
(ii) (G(k))+k is non-discrete if and only if G(k) is non-discrete.
(iii) (G(k))+k satisfies Property Pk.

Theorem 13. Suppose that G ≤ Aut(T ) does not stabilize a proper subtree of T .
Then (G(r))+r ≤ (G(k))+k for every r ≥ k, with equality if and only if G(r) = G(k).

Thus, in order to construct infinitely many distinct t.d.l.c. simple non-discrete
subgroups of Aut(T ) it suffices to find examples with infinitely many distinct k-
closures. By Corollary 10, this amounts to finding examples which do not satisfy
Property Pk for any k.

Example 14. The following groups do not satisfy Property Pk for any k.

(i) PSL(2,Qp) acting on its Bruhat–Tits tree (which is isomorphic to Tp+1).
(ii) BS(m,n) := 〈a, t | t−1amt = an〉 (Baumslag–Solitar group) for coprime

m,n acting on its Bass–Serre tree (which is isomorphic to Tm+n).

We note that this method finds infinitely many t.d.l.c. simple non-discrete
groups which are pairwise distinct as subgroups of Aut(T ). It would be desirable
to know whether these subgroups are pairwise non-isomorphic. This is stated as
work in progress in [1]. Using different methods, Simon Smith has found uncount-
ably many t.d.l.c. simple non-discrete groups which are pairwise non-isomorphic.
This was discussed in the talk by C. Reid and G. Willis.
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