TALK DÜSSELDORF

STEPHAN TORNIER

1. Local Action. Let $T_d = (V, E)$ denote the *d*-regular tree $(d \in \mathbb{N}_{\geq 3})$ and let $H \leq \operatorname{Aut}(T_d)$. Given $x \in V$, the *local action* of H at x is the permutation group

$$H_x \curvearrowright E(x) := \{e \in E \mid x \in e\}.$$

Let Ω be a set. A permutation group $F \leq \operatorname{Sym}(\Omega)$ could be

2-transitive
$$\Rightarrow$$
 primitive \Rightarrow quasiprimitive \Rightarrow semiprimitive \Rightarrow transitive $A_3 \qquad A_5 \curvearrowright A_5/C_5 \qquad C_4 \trianglerighteq C_2 \qquad D_4 \trianglerighteq C_2 \times C_2$

2. Burger–Mozes Theory. The fundamental definitions of Burger–Mozes theory are meaningful in the setting of totally disconnected locally compact groups: Let H be a t.d.l.c. group. We define

$$H^{(\infty)} := \bigcap \{ N \le H \mid N \text{ closed normal cocompact} \},$$
$$\mathrm{QZ}(H) := \{ h \in H \mid C_H(h) \le H \text{ is open} \}.$$

Theorem 1 (Burger-Mozes '00). Let $H \leq \operatorname{Aut}(T_d)$ be closed, non-discrete and locally quasiprimitive.

- (i) $H^{(\infty)}$ is minimal closed normal cocompact in H.
- (ii) QZ(H) is maximal discrete normal, and non-cocompact in H.
- (iii) $H^{(\infty)}/QZ(H^{(\infty)}) = H^{(\infty)}/(QZ(H)\cap H^{(\infty)})$ admits minimal, non-trivial closed normal subgroups; finite in number, H-conjugate and topologically simple.

If, in addition, H is locally primitive then

- (iv) $H^{(\infty)}/QZ(H^{(\infty)})$ is a direct product of topologically simple groups.
- 3. Groups Acting on Trees with Non-Trivial Quasi-Center.

Theorem 2 (Burger–Mozes '00, T. '17). Let $H \leq \operatorname{Aut}(T_d)$ be non-discrete. If H is locally

- (i) transitive then QZ(H) contains no inversion.
- (ii) semiprimitive then QZ(H) contains no non-trivial edge-fixating element.
- (iii) quasiprimitive then QZ(H) contains no non-trivial elliptic element.
- (iv) k-transitive $(k \in \mathbb{N})$ then QZ(H) contains no hyperbolic element of length k.

Theorem 3 (T. '17). There is a closed, non-discrete, compactly generated subgroup of $Aut(T_d)$ which is locally

- (i) intransitive and contains a quasi-central inversion.
- (ii) transitive and contains a non-trivial quasi-central edge-fixating element.
- (iii) semiprimitive and contains a non-trivial quasi-central elliptic element.
- (iv) (a) intransitive and contains a quasi-central hyperbolic element of length 1.
 - (b) quasiprimitive and contains a quasi-central hyperbolic element of length 2.

Date: June 25, 2018.