
INTRODUCTION TO GROUP THEORY

STEPHAN TORNIER

Abstract. These notes form the basis of an introduction to group theory aimed at second year
students in the form of four 2-hour lectures, delivered to students at The University of Newcastle,
Australia as part of a summer project entitled “Puzzles, Codes and Groups”.

Syllabus: Groups, homomorphisms, subgroups, quotients, isomorphism theorem, symmetric
groups, generators, Cayley graphs, group actions, orbit-stabiliser theorem, Burnside’s lemma.

1. Groups and Homomorphisms

A group is a set with an operation that obeys certain natural assumptions, such as the set of
symmetries of a geometric object. As we shall see, groups are ubiquitous in mathematics.

1.1. Definition and Examples.

Definition 1.1 (Group). A group is a pair (G, ◦) consisting of a set G and a map ◦ : G×G → G
which satisfies the following axioms.

(i) (Associativity). For all g1, g2, g3 ∈ G we have (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).
(ii) (Neutral Element). There is e ∈ G with e ◦ g = g = g ◦ e for all g ∈ G.
(iii) (Inverse Elements). For every g ∈ G there is g′ ∈ G with g ◦ g′ = e = g′ ◦ g.

Example 1.2.

(i) Consider the equilateral triangle below. We see that there are symmetry axes through each
of the vertices and the respective opposite side. Let si (i ∈ {0, 1, 2, }) denote the associated
reflection. Furthermore, note that the triangle has rotational symmetry about its center.
Let r0, r1, r2 denote the counter-clockwise rotations of 0, 120 and 240 degrees.

b b

b

0 1

2
s0s1

s2

◦ r0 r1 r2 s0 s1 s2
r0 r0 r1 r2 s0 s1 s2
r1 r1 r2 r0
r2 r2 r0 r1
s0 s0 s1 r0
s1 s1 r0
s2 s2 r0

Composing any two of these symmetries yields another symmetry of the triangle. For ex-
ample, we have r1 ◦ r1 = r2 and s0 ◦ r1 = s1. Complete the composition table above. The
symmetry group of an equilateral triangle is often denoted by D3. Similarly, the symmetry
group of a regular n-gon (n ∈ N≥3) is denoted by Dn, and termed dihedral group. It has
2n elements, namely n rotations (including the rotation of 0 degrees) and n reflections.

(ii) Let (V,+, ·) be a vector space. Then (G, ◦) := (V,+) is a group. For example, the group
(Rn,+) (n ∈ N) is of this form.

(iii) The pair (Z,+) is a group. How about (N0,+)?
(iv) Let (G, ◦) = (Z /3Z,+) be the residue classes of integers modulo 3. The composition table

for (Z /3Z, ◦) looks as follows.

◦ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Similarly, we can consider the group Z /nZ (n ∈ N) of integers modulo n ∈ N.
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(v) Recall that the set GL(2,R) of 2× 2-matrices is defined by

GL(2,R) =

{(

a b
c d

)
∣

∣

∣

∣

a, b, c, d ∈ R and det

(

a b
c d

)

= ad− bc 6= 0

}

.

More generally, the set GL(n,R) (n ∈ N) of n× n matrices with real entries and non-zero
determinant is turned into a group by matrix multiplication. Note that GL(1,R) = R \{0}
and that matrix multiplication amounts to multiplication of real numbers in this case. How
about the set Mat(n,R) of all n× n-matrices with real entries?

(vi) Let X be a set and (G, ◦) := (Sym(X), ◦), where

Sym(X) = {f : X → X | f is a bijection}

and ◦ is the usual composition of functions. The group (Sym(X), ◦) is the symmetric group

on X and elements of Sym(X) are permutations of the set X . When X is finite of size
n ∈ N, it is often replaced by X := {1, . . . , n} and Sym(X) is often denoted by Sn.

A group (G, ◦) in which g1 ◦ g2 = g2 ◦ g1 for all g1, g2 ∈ G is commutative, or abelian. Which of
the groups in Example 1.2 are commutative?

The following statements show that the neutral element and inverse elements of Definition 1.1
are in fact unique.

Lemma 1.3. Let (G, ◦) be a group. Then (G, ◦) has a unique neutral element.

Proof. Suppose that e and e′ are neutral elements of (G, ◦). We show that e = e′: One the one
hand, we have e ◦ e′ = e′ because e is a neutral element. On the other hand, e ◦ e′ = e because e′

is a neutral element. Overall, we have e = e ◦ e′ = e′. �

Lemma 1.4. Let (G, ◦) be a group. Then every g ∈ G has a unique inverse element.

Proof. Let g ∈ G and suppose that g′ and g′′ are inverse elements of g, that is g ◦ g′ = e = g′ ◦ g
and g ◦ g′′ = e = g′′ ◦ g. Show that g′ = g′′. Exercise. �

Given a group (G, ◦) and g ∈ G the unique element of G which is inverse to g is denoted by
g−1. This notation allows us to apply the familiar index laws in the setting of groups: Given g ∈ G
and n ∈ Z we define gn by

(i) g ◦ · · · ◦ g (g composed with itself n times) if n > 0,
(ii) g0 = e, and
(iii) (g−n)−1 if n < 0.

As a consequence, we have the following, familiar index laws for g ∈ G and m,n ∈ Z.

(i) g0 = e and g1 = g,
(ii) gm ◦ gn = gm+n,
(iii) (gm)n = gmn, and
(iv) (gm)−1 = g−m = (g−1)m.

We also have the following familiar cancellation law.

Lemma 1.5. Let (G, ◦) be a group and g1, g2, g3 ∈ G. If g1 ◦ g2 = g1 ◦ g3, or g2 ◦ g1 = g3 ◦ g1, then
g2 = g3.

Proof. Exercise. �

Definition 1.6 (Order). Let (G, ◦) be a group and g ∈ G. The order of G is ord(G) := |G|. The
order of g ∈ G is the smallest natural number n ∈ N such that gn = e, if it exists, and infinity
otherwise, denoted by ord(g).

Example 1.7.

(i) In any group, the neutral element has order 1.
(ii) The order of D3 is 6 and, for example, ord(r1) = 3, and ord(s0) = 2.
(iii) Every non-trivial element of (Z,+) has infinite order.
(iv) Let (G, ◦) be a group and g ∈ G. If gn = e then ord(g) divides n.
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1.2. Group Homomorphisms. To compare different groups to each other, we use maps between
them that respect the composition.

Definition 1.8 (Homomorphism). Let (G1, ◦1) and (G2, ◦2) be groups. A homomorphism from
(G1, ◦1) to (G2, ◦2) is a map ϕ : G1 → G2 such that ϕ(g ◦1 g′) = ϕ(g) ◦2 ϕ(g′) for all g, g′ ∈ G1.

Remark 1.9. Stating that a map ϕ : (G1, ◦1) → (G2, ◦2) is a homomorphism can be rephrased
as saying that the two paths from G1 ×G1 to G2 in the following diagram yield the same result.

G1 ×G1
(ϕ,ϕ)

//

◦1

��

G2 ×G2

◦2

��

G1 ϕ
// G2

Example 1.10.

(i) Consider the groups (Z,+) and (Z /nZ,+) introduced in Example 1.2 as well as the map

q : Z → Z /nZ given by q(a) = a (a ∈ Z). We have q(a+ b) = a+ b = a+ b = q(a) + q(b)
for all a, b ∈ Z, so q is a homomorphism.

(ii) The determinant function in linear algebra defines a homomorphism det from the group
(GL(n,R), ◦) to the group (R \{0}, ·). Indeed, we have det(A ◦B) = det(A) · det(B) for all
A,B ∈ GL(n,R), as proven in linear algebra.

(iii) In analysis, one defines the exponential map exp : R → R. It induces a homomorphism
from (R,+) to (R \{0}, ·). Indeed, we have exp(a+ b) = exp(a) · exp(b) for all a, b ∈ R.

Bijective group homomorphisms are called isomorphisms. Isomorphic groups are hence the same

up to renaming elements and the group composition. For example, the group (Z /3Z,+) and the
group ({r0, r1, r2}, ◦) of rotations of an equilateral triangle are isomorphic. Can you exhibit an
isomorphism between the two groups?

1.3. Groups and Puzzles. A puzzle, such as the 15-puzzle, or the Rubik’s cube, is always in one
of its possible configurations and only certain basic moves are allowed to manipulate it.

Typically, each of these basic moves can be applied to any configuration. For example, in the case
of the Rubik’s cube, each side can be rotated irregardless of which colours it involves. Applying a
basic move to a certain configuration yields another configuration. In other words, the basic moves
are maps from the set of configurations to itself. Moreover, basic moves can typically be undone, e.g.
by rotating in the opposite direction. Finally, basic moves can be composed to yield more general
moves. Overall, one sees that the set of moves that can be obtained by forming arbitrary sequences
of basic moves forms a group, namely the group generated by the basic moves, see Section 3.

1.4. Exercises.

(1) Which of the following pairs are groups?
(a) ({−1, 1}, ·).
(b) (N0,+).
(c) ({2n | n ∈ Z},+).
(d) (Z, ·).
(e) (Z, •), where for a, b ∈ Z we define a • b := a+ b− 1.
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(2) Complete the composition table of the symmetry group of an equilateral triangle in Ex-
ample 1.2 (i).

(3) Produce a composition table for the group (Z /6Z,+).
(4) Determine the order of every element of the groups D3 and Z /6Z.
(5) For each group in Example 1.2, determine whether or not it is commutative.
(6) Complete the proof of Lemma 1.4. Hint : Use associativity of (G, ◦).
(7) Prove Lemma 1.5.
(8) Let (G, ◦) be a group in which g ◦ g = e for all g ∈ G. Show that G is commutative.
(9) Define a non-trivial homomorphism from the dihedral group D3 to the symmetric group

Sym({0, 1, 2}). Is it an isomorphism?
(10) Define a non-trivial homomorphism from the dihedral group D4 to the symmetric group S4.

Is it an isomorphism?
(11) Show that (Z /3Z,+) and the group ({r0, r1, r2}, ◦) of rotations of an equilateral triangle

are isomorphic.
(12) Show that the groups (R,+) and (R>0, ·) are isomorphic.
(13) Are the groups D3 and Z /6Z isomorphic?
(14) Try to think of groups of order 4. How many different ones, up to isomorpism, can you

come up with?
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2. Subgroups, Cosets and Quotients

We will often abbreviate groups (G, ◦) to G, and composition of group elements g1 ◦ g2 to g1g2.

2.1. Subgroups. A subgroup of a group (G, ◦) is a subset of G which inherits a group structure
from the composition map ◦ on G. More precisely, we make the following definition.

Definition 2.1 (Subgroup). Let (G, ◦) be a group with neutral element e ∈ G. A subgroup of
(G, ◦) is a subset H ⊆ G such that

(i) e ∈ H ,
(ii) for all h1, h2 ∈ H we have h1 ◦ h2 ∈ H , and
(iii) for all h ∈ H we have h−1 ∈ H .

Retain the notation of Definition 2.1. We write H ≤ G to indicate that H is not only a subset
but a subgroup of G. Note that by part (ii), the map ◦ ranges in H when restricted to H × H .
With this restricted map, that we also denote by ◦, the pair (H, ◦) is a group in its own right.

Lemma 2.2. Let G be a group and H a non-empty subset. Then H is a subgroup of G if and
only if h1h

−1
2 ∈ H for all h1, h2 ∈ H .

Proof. If H is a subgroup of G then h1h
−1
2 ∈ H for all h1, h2 ∈ H by parts (iii) and (ii) of

Definition 2.1.
Conversely, suppose that H is non-empty and that h1h

−1
2 ∈ H for all h1, h2 ∈ H . Since H is

non-empty there some h ∈ H . We conclude that hh−1 = e ∈ H , thus part (i) of Definition 2.1
holds. Now, given h ∈ H , set h1 := e and h2 := h. Then h1h

−1
2 = eh−1 = h−1 ∈ H . This is part (iii)

of Definition 2.1. Therefore, for all h1, h2 ∈ H we have h−1
2 ∈ H and hence h1(h

−1
2 )−1 = h1H2 ∈ H

as required by part (ii) of Definition 2.1. �

Note that in a finite group G, the inverse of any element g ∈ G is a power of that element.
Indeed, since G is finite, the elements {gn | n ∈ N0} cannot all be distinct. Say gn = gm for some
distinct n,m ∈ N0 with m > n. Then gm−n = e because gngm−n = gm = gn. In particular, the
inverse of g is gm−n−1 as ggm−n−1 = gm−n = e. Hence, in the case of a finite group G and a
subset H ⊆ G, checking that H is a subgroup of G only requires checking that h1h2 ∈ H for all
h1, h2 ∈ H , given Lemma 2.2.

We have already seen examples of subgroups: The set 2Z is a subgroup of (Z,+) and {r0, r1, r2}
is a subgroup of D3. Homomorphisms are a particularly important source of subgroups.

Definition 2.3. Let G1 and G2 be groups with neutral elements e1 and e2, and let ϕ : G1 → G2

be a homomorphism. The kernel of ϕ is the set

ker(ϕ) := {g ∈ G1 | ϕ(g) = e2} ⊆ G1,

and the image of ϕ is the set

im(ϕ) := {ϕ(g) | g ∈ G1} ⊆ G2.

Lemma 2.4. Let G1 and G2 be groups and ϕ : G1 → G2 a homomorphism. Then ker(ϕ) is a
subgroup of G1 and im(ϕ) is a subgroup of G2.

Moreover, if H is any subgroup of G1, then ϕ(H) is a subgroup of G2, and if H is any subgroup
of H2 then ϕ−1(H) = {g ∈ G | ϕ(g) ∈ H} is a subgroup of G1.

Proof. We apply Lemma 2.2. First, we check that ker(ϕ) is a subgroup of G1. Let g, g′ ∈ ker(ϕ).
We need to check that g(g′)−1 is also an element of ker(ϕ). Since ϕ is a homomorphism, we have
ϕ(g(g′)−1) = ϕ(g)ϕ((g′)−1) = ϕ(g)ϕ(g′)−1 = ee = e.

For the image im(ϕ) = {ϕ(g) | g ∈ G1}, suppose that g, g′ ∈ im(ϕ) ⊆ G2. Then there are
h, h′ ∈ G1 such that ϕ(h) = g and ϕ(h′) = g′. We see that

g(g′)−1 = ϕ(h)ϕ(h′)−1 = ϕ(h)ϕ((h′)−1) = ϕ(h(h′)−1),

so g(g′)−1 ∈ im(ϕ).
To check that images and inverse images of subgroups are again subgroups is an exercise. �
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Given a group G and an element g ∈ G, consider the conjugation map

cg : G → G, h 7→ ghg−1

This map is a homomorphism of G into itself since

g(hh′) = ghh′g−1 = gh(g−1g)h′g−1 = (ghg−1)(gh′g−1) = cg(h)cg(h
′)

for all h, h′ ∈ G. Since the maps cg and cg−1 (g ∈ G) are mutually inverse to each other we conclude
that cg is an isomorphism of G for every g ∈ G.

Given h, h′ ∈ G, we say that h, h′ are conjugate in G if there exists g ∈ G such that cg(h) = h′.
Similarly, given subgroups H,H ′ ≤ G, we say that H,H ′ are conjugate if there exists g ∈ G such
that cg(H) = H ′.

2.2. Reminder: Equivalence Relations. Let X be a set. A relation on X is a subset R of X2.
When (x, y) ∈ R for some x, y ∈ X we also write x ∼ y and say that x and y are related to each
other. An equivalence relation on X is a relation on X which satisfies the following additional
assumptions.

(i) (Reflexive). For all x ∈ X : x ∼ x.
(ii) (Symmetric). If x ∼ y for some x, y ∈ X , then y ∼ x.
(iii) (Transitive). If x ∼ y and y ∼ z for some x, y, z ∈ X then x ∼ z.

Proposition 2.5. Let X be a set and let ∼ be an equivalence relation on X . Then any two
equivalence classes are either disjoint or equal. In particular, the set of equivalence classes yields a
partition of X .

Proof. Let x, y ∈ X and let [x] = {z ∈ X | x ∼ z} and [y] = {z ∈ X | y ∼ z} denote their
equivalence classes. If [x] and [y] are not disjoint, there is an element z ∈ X such that z ∈ [x] and
z ∈ [y]. In particular, x ∼ z and y ∼ z. By symmetry, we also have z ∼ y. Therefore, by transitivity,
x ∼ y. Thus y ∈ [x]. Similarly, x ∈ [y]. By transitivity, we conclude [y] ⊆ [x] and [x] ⊆ [y]. Overall,
[x] = [y]. �

Example 2.6. Note that in each of the following examples, the equivalence classes are either
disjoint or equal, and form a partition of the the set.

(i) Let X = C. For z1, z2 ∈ C define z1 ∼ z2 if and only |z1| = |z2|. This is an equivalence
relation. The equivalence class of z ∈ C consists of all complex numbers on the circle
around 0 ∈ C of radius |z|.

b

b

b

z

z′

b
z′′

(ii) Let X = Z and n ∈ Z. Define x ∼ y if and only if x ≡ y mod n. This is an equivalence
relation. The equivalence classes are

0 = {. . . ,−2n,−n, 0, n, 2n, . . .},

1 = {. . . ,−2n+ 1,−n+ 1, 1, n+ 1, 2n+ 1, . . .},

...

n− 1 = {. . . ,−2n+ (n− 1),−n+ (n− 1), n− 1, 2n+ (n− 1), . . .}.

The elements of the group (Z /nZ,+) are precisely these equivalence classes.
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2.3. Cosets. Given a group G and a subgroup H ≤ G, we consider the sets

gH = {gh | h ∈ H} and Hg := {hg | g ∈ G}

for every g ∈ G. They are left cosets and right cosets of H in G respectively. The set of all left
cosets of H in G is denoted by G/H := {gH | g ∈ G} and the set of all right cosets of H in G
is denoted by H\G := {Hg | g ∈ G}. Both G/H and H\G form a partition of the set G: In fact
G/H is the partition associated to the equivalence relation g1 ∼l g2 if and only if g−1

2 g1 ∈ H , and
H\G stems from the equivalence relation g1 ∼r g2 if and only if g1g

−1
2 ∈ H . For example,

g1 ∼l g2 ⇔ g−1
2 g1 ∈ H ⇔ ∃h ∈ H : g1 = g2h ⇔ g1H = g2H.

Lemma 2.7. Let G be a group and H ≤ G. Then |G/H | = |H\G|.

In words, Lemma 2.7 states that the number of left cosets of a given subgroup is equal to the
number of right cosets of that same subgroup. This number is the index of H in G, denoted [G : H ].

Proof. (Lemma 2.7). We show that the map i : G → G given by g 7→ g−1 induces a bijection
from G/H to H\G. In particular, this implies |G/H | = |H\G|. Let gH be a left coset of H and
consider the set i(gH) = {i(gh) | h ∈ H} = {h−1g−1 | h ∈ H}. Since H is a subgroup of G, we
have H = i(H) and therefore i(gH) = Hg−1 is a right coset. Thus i induces a map from G/H to
H\G. Conversely, i(Hg) = g−1H , so we also have a map from H\G to G/H and the two maps are
mutually inverse to each other. Consequently, they are bijections. �

Theorem 2.8 (Lagrange). Let G be a finite group and H a subgroup of G. Then

|G| = [G : H ] · |H |

In particular |H | and [G : H ] divide |G|.

Proof. The set G/H = {gH | g ∈ G} of left cosets of H in G is a partition of G consisting of
|G/H | = [G : H ] many elements. Hence it suffices to show that |gH | = |H | for all g ∈ G. This is
a consequence of Lemma 1.5: Indeed, consider the map lg : H → gH given by h 7→ gh. This map
is surjective by the definition of gH . It is also injective: Suppose lg(h1) = lg(h2), i.e. gh1 = gh2.
Then h1 = h2 by Lemma 1.5. Thus lg is a bijection and |H | = |gH | for all g ∈ G. �

Note that while Lagrange’s theorem says that the order of a subgroup is always a divisor of the
order of the group, it is not clear whether every divisor of the group also appears as the order of
some subgroup. In fact, this need not be the case.

2.4. Quotients. For certain subgroups H of a group G the set of left cosets G/H of H in G can
be equipped with a natural group structure.

Definition 2.9 (Normal subgroup). Let G be a group and let N be a subgroup of G. Then N is
normal if gN = Ng for every g ∈ G.

In other words, a subgroup N ≤ G is normal if and only if cg(N) = gNg−1 = N for all g ∈ G.
Yet in other words, a subgroup N ≤ G is normal if and only if G/H = H\G. We write N EG to
indicate that N is not only a subgroup but a normal one.

For example, one can check that the subgroup R := {r0, r1, r2} of D3 is normal whereas {r0, s0}
is not. The kernel of a homomorphism is always a normal subgroup by the following proposition.

Proposition 2.10. Let G1 and G2 be groups and ϕ : G1 → G2 a homomorphism. Then ker(ϕ)EG1.

Proof. The kernel K of ϕ is a subgroup of G1 by Lemma 2.4. To see that it is normal, let g ∈ G
and k ∈ ker(ϕ). Then ϕ(gkg−1) = ϕ(g)ϕ(k)ϕ(g−1) = ϕ(g)ϕ(g)−1 = e, so cg(K) = gKg−1 ⊆ K.
Conversely, if k ∈ K, then so is g−1kg and cg(g

−1kg) = k, hence cg(K) = gKg−1 = K. �

While the kernel of a homomorphism is always a normal subgroup, the image need not be. For
example, the image of the homomorphism Z /2Z → D3 defined by 0 7→ r0 and 1 7→ s0 is given by
{r0, s0} wich is not normal.

Surprisingly, every normal subgroup can be seen as the kernel of some homomorphism: Given
any group G, and any normal subgroup N of G there is a group H and a hommorphism ϕ : G → H
such that ker(ϕ) = H . The group H and the homomorphism ϕ are constructed in the following
proposition. When (G, ◦) is a group and A,B are subsets, we let AB := {a ◦ b | a ∈ A, b ∈ B}.



8 STEPHAN TORNIER

Proposition 2.11. Let G be a group and let N be a normal subgroup of G. Then the set G/N
of left cosets of N in G is a group with respect to multiplication of sets. Furthermore, the map
π : G → G/N given by g 7→ gN is a homomorphism with kernel N .

Proof. First of all, note that the product of two elements of G/N is again an element of G/N :
Indeed, for gN, hN ∈ G/N we compute (gN)(hN) = g(Nh)N = g(hN)N = ghN because N is a
normal subgroup of G. Next, multiplication of sets is an associative operation. The neutral element
is given by the coset eN = N since for every gN ∈ G/N we have N(gN) = (Ng)N = (gN)N = gN
and, (gN)N = gN . We also see that the inverse of gN ∈ G/N with respect to multiplication of
sets is given by g−1N as (gN)(g−1N) = g(Ng−1)N = g(g−1)NN = eN = N .

To check that the map π : G → G/N given by g 7→ gN is a homomorphism, let g, h ∈ G. We
have π(gh) = ghN = ghNN = g(hN)N = g(Nh)N = (gN)(hN) = π(g)π(h). Finally, to see that
ker(π) = N , we first let n ∈ N . Then π(n) = nN = N because N is a subgroup of G. Conversely, if
g ∈ ker(π), then gN = π(g) = N , i.e. there are n1, n2 ∈ N with gn1 = n2, so g = n2n

−1
1 ∈ N . �

Example 2.12. Consider the group (Z,+). The subset nZ of Z defined by nZ := {nk | k ∈ Z} is
a normal subgroup of Z and Z /nZ is the group of Example 1.2(iv).

Theorem 2.13 (Isomorphism Theorem). Let G,H be groups and let ϕ : G → H be a homomor-
phism. Then im(ϕ) is isomorphic to G/ ker(ϕ). More precisely, there is a unique isomorphism from
G/ ker(ϕ) → im(ϕ) such that the following diagram commutes.

G
ϕ

//

π

��

H

G/ ker(ϕ)
ϕ̃

// im(ϕ)

OO

Proof. Let K := ker(ϕ). We define a map ϕ̃ from G/K to im(ϕ) by ϕ̃(gK) := g for all gK ∈ G/K
and show that it is an isomorphism. The main difficulty constitutes in showing that ϕ̃ is well-defined.
Namely, if g1K = g2K for some, possibly distinct g1, g2 ∈ G, is it true that ϕ(g1) = ϕ(g2)? This is
indeed the case: We have g1K = g2K if and only if g−1

1 g2 ∈ K, i.e. ϕ(g1)
−1ϕ(g2) = ϕ(g−1

1 g2) = e
which in turn holds if and only if ϕ(g1) = ϕ(g2).

It is now immediate that the map ϕ̃ : G/K → im(ϕ) is surjective. �

2.5. Exercises.

(1) Find an example of an infinite group (G, ◦) and a subset H ⊆ G such that h ◦ h′ ∈ H for
all h, h′ ∈ H but where H is not a subgroup of G.

(2) Find all subgroups of D3 and list their left cosets.
(3) Find a subgroup of order 3 in the symmetry group D6 the regular 6-gon.
(4) Let G be a group and let H1, H2 be subgroups of G. Show that H1 ∩H2 is also a subgroup

of G. What about H1 ∪H2?
(5) The center of a group G is the set Z(G) := {g ∈ G | ∀h ∈ G : gh = hg}. Show that Z(G)

is a (normal) subgroup of G and determine Z(G) for each of the groups in Example 1.2.
(6) Let G1 and G2 be groups and let ϕ : G1 → G2 be a homomorphism. Show that if H is a

subgroup of G1 then ϕ(H) is a subgroup of G2, and that if H is a subgroup of G2, then
ϕ−1(H) is a subgroup of G1.

(7) Let G be a group of order 16. What are the possible orders of subgroups of G? How big
are their associated sets of left/right cosets? What about the case where G has order 17?

(8) Let G be a commutative group and H ≤ G. Show that G/H = H\G. That is, every
subgroup of a commutative group is normal.

(9) Let G be a finite group and N a normal subgroup of G. Show that the order of the group
G/N is given by |G|/|N |.

(10) Consider the group D3 and its normal subgroup R := {r0, r1, r2}. What is the quotient
group D3/R?.

(11) Show that the set S1 = {z ∈ C | |z| = 1} is a group with respect to multiplication of
complex numbers and show that it is isomorphic to the quotient of the group (R,+) by
its normal subgroup (Z,+). Hint : Construct a suitable homomorphism from (R,+) to S1

and use the isomorphism theorem.
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3. Symmetric Group, Generators and Cayley (Di)graphs

3.1. The Symmetric Group. Let us return to the symmetric group Sn of Example 1.2(vi), the
group of all permutations of the set {1, . . . , n} with the composition of functions. Elements σ ∈ Sn

are typically written as a table of values:

σ =

(

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)

.

For example, the element

τ :=

(

1 2 3
1 3 2

)

is the permutation of {1, 2, 3} that fixes 1 and interchanges 2 and 3. A permutation like τ which
simply interchanges two elements and fixes everything else is a transposition. The support of a
permutation σ ∈ Sn is the set {i ∈ {1, . . . , n} | σ(i) 6= i}, i.e. the set of all points that are not fixed
by σ. A transposition thus is a permutation whose support consists of exactly two elements.

Proposition 3.1. Every element of Sn (n ∈ N) can be written as a product of transpositions.

Proof. We argue by induction on n. If n = 1, the only permutation is the trivial permutation
which is an empty product of transpositions. Now suppose that every permutation of Sn can be
written as a product of transpositions and let σ ∈ Sn+1. If σ(n + 1) = n + 1 then σ restricts to
a permutation of {1, . . . , n} which, by the induction hypothesis, can be written as a product of
transpositions. If σ(n+ 1) = i 6= n+ 1 then the product

τ ◦ σ =

(

1 2 · · · i · · · n+ 1
1 2 · · · n+ 1 · · · i

)

◦ σ

of the transposition τ which interchanges i and n+ 1 with σ fixes n+ 1. Hence, by the induction
hypothesis, it can be written as a product of transpositions τσ = τ1 · · · τm. Hence σ = τ−1τ1 · · · τm
is a product of transpositions as well. �

Cycles are a particularly useful class of permutations.

Definition 3.2 (Cycle). Let 2 ≤ k ≤ n and i1, . . . , ik ∈ {1, . . . , n} distinct elements. The cycle

(i1 i2 · · · ik) is the permutation γ defined by

γ(ij) = ij+1 for j < k, γ(ik) = i1 and γ(j) = j whenever j /∈ {i1, . . . , ik}

The length of γ is k.

Retain the notation of Definition 3.2. The support of the cycle (i1 i2 · · · ik) is {i1, . . . , ik}. The
following proposition states that permutation whose supports are disjoint commute.

Proposition 3.3. Let σ1, σ2 ∈ Sn and suppose that supp(σ1) ∩ supp(σ2) = ∅. Then σ1 and σ2

commute, i.e. σ1σ2 = σ2σ1.

Proof. We show that σ1 and σ2 agree on every element i ∈ {1, . . . , n}. If i is neither in the support
of σ1 nor in the support of σ2, then σ1σ2(i) = i = σ2σ1(i). If i ∈ supp(σ1) then σ1(i) is in the
support of σ1 as well. Indeed, if σ1(i) 6= i then σ1σ1(i) 6= σ1(i). Hence neither i nor σ1(i) are in
the support of σ2 and we conclude σ1σ2(i) = σ1(i) = σ2σ1(i). A similar argument applies when
i ∈ supp(σ2). �

Theorem 3.4. Every permutation σ ∈ Sn can be written as a product of cycles with pairwise
disjoint supports, uniquely so up to the order of the cycles.

Instead of proving Theorem 3.4 we illustrate it on an example and thereby make the strategy
of proof clear. Consider the permutation

σ :=

(

1 2 3 4 5 6 7 8 9 10
10 4 5 2 6 9 7 3 1 8

)

∈ S10

Let us track where 1 is mapped to under repeated application of σ. We have

1 7→ 10 7→ 8 7→ 3 7→ 5 7→ 6 7→ 9 7→ 1

The smallest number not covered by this list is 2. Doing the same for 2 yields

2 7→ 4 7→ 2
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Continuing in the same fashion, we finally obtain 7 7→ 7. Thus σ can be written as

σ = (1 10 8 3 5 6 9)(2 4)(7) = (1 10 8 3 5 6 9)(2 4)

3.2. Generators. When trying to find subgroups of a given group, one naturally starts by picking
a number of elements, maybe just one, and sees which other group elements are generated by
composing these elements, taking inverses, and so on. The following result specifies this process.

Proposition 3.5. Let G be a group and let S be a non-empty subset of G. The set 〈S〉 of all
products in G of elements of S and inverses of elements of S is a subgroup of G. In fact, it is the
smallest subgroup of G that contains S.

Proof. Since the inverse of a product of elements from S and their inverses is the product of the
inverse elements in reverse order, we see that w1w

−1
2 ∈ S whenever w1, w2 are in S. Thus 〈S〉 is a

subgroup of G by Lemma 2.2. �

In the context of Proposition 3.5, we say that 〈S〉 is the subgroup generated by S.

Definition 3.6. Let G be a group and S ⊆ G. Then G is generated by S if G = 〈S〉. In this case,
S is a generating set of G.

Example 3.7.

(i) The group (Z,+) is generated by 1 ∈ Z: Any integer is a sum of 1’s or −1’s.
(ii) The group D3 is generated by r1 and s0. For example, we see that r2 = r1r1, s1 = r1s0r

−1
1

and s2 = r1r1s0r
−1
1 r−1

1 .

Cyclic groups are groups which are generated by a single element, like (Z,+).

Lemma 3.8. Let G be a group and g ∈ G. The set of all powers of g is a subgroup of G and
coincides with 〈g〉.

Proof. The set {gn | n ∈ Z} of all powers of g contains e = g0. It also contains inverses since
(gn)−1 = g−n and products as gngm = gn+m for all n,m ∈ Z. �

Lemma 3.8 provides a strategy to find all subgroups of a given group. First, determine all the
cyclic subgroups generated by single elements. Subgroups with two generators are also generated
by the union of two cyclic subgroups. Subgroups with three generators are also generated by the
union of a subgroup with two generators and a cyclic subgroup, and so on. For moderately small
groups this process quickly yields all subgroups. Lagrange’s Theorem 2.8 helps: For example, when
a subgroup contains more than half of the group elements it has to be the whole group.

3.3. Cayley graphs. Cayley graphs are a way to represent a group as a graph. Let G be a group
and suppose that G is generated by S ⊆ G. We define the Cayley graph Γ(G,S) to have vertex
set G and oriented edges (g, gs) labelled by s for all g ∈ G and s ∈ S. For example, the graph
Γ(Z, {1}) looks as follows

1 1 1 1 1 1 1 1
· · · · · ·b b b b b b b b b

−4 −3 −2 −1 0 1 2 3 4

whereas Γ(Z, {2, 3}) is given by

b b b b b b b b b· · · · · ·
−4 −3 −2 −1 0 1 2 3 4

2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3
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As a final example, consider the Cayley graph of (Z /3Z,+) with respect to the generating set 1.

b b

b

0 1

2

11

1

Starting at a certain group element in a Cayley graph, following an arrow tells us which group
element we obtain by multiplying the start element on the right by the label of the arrow.

3.4. Exercises.

(1) What is the order of Sn?
(2) Write the permutation

(

1 2 3 4 5 6 7 8
8 4 7 2 1 6 3 5

)

∈ S8

as a product of cycles with pairwise disjoint support.
(3) Find small generating sets for S3 and S4. What about Sn in generality?
(4) Show that every subgroup of (Z,+) is generated by a single element.
(5) Show that every group whose order is a prime number is cyclic.
(6) What is the subgroup of S4 = Sym({1, 2, 3, 4}) generated by the elements (1 2) and (3 4).

Is it isomorphic to Z /4Z?
(7) Find subgroups of S5 that are isomorphic to Z /5Z and D3 respectively.
(8) Show that {r1, s0} and {s0, s1} are generating sets of D3 and draw the Cayley graphs of

D3 with respect to them.
(9) Let G be a group. What is the Cayley graph of G with respect to the generating set G ⊆ G?
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4. Group Actions

Definition 4.1 (Group action). Let G be a group and let X be a set. An action of G on X is a
map α : G×X → X such that

(i) for all x ∈ X , we have α(e, x) = x, and
(ii) for all g1, g2 ∈ G we have α(g1, α(g2, x)) = α(g1 ◦ g2, x).

In the context of Definition 4.1 we often write g·x instead of α(g, x). The expression α(g1, α(g2, x))
then becomes g1 · (g2 · x). The two axioms of Definition 4.1 entail that for every g ∈ G the map
αg : X → X given by x 7→ g · x is a bijection. In fact, the inverse of αg is given by α−1

g . Thus the
maps αg (g ∈ G) are elemnts of Sym(X), and one can see that the map A : G → Sym(X), g 7→ αg

is a homomorphism. Conversely, a homomorphism A : G → Sym(X) gives rise to a group action
α : G×X → X : simply set α(g, x) := A(g)(x).

Example 4.2. Group actions appear overwhelmingly often.

(i) The dihedral group G := Dn acts on the set X of corners of the regular n-gon: The action
map α : G × X → X is given by α(g, x) := g(x). That is, g · x := g(x), a symmetry is
evaluated on a corner.

(ii) Similar to part (i), the symmetric group Sn acts on the set X := {1, . . . , n} by evaluation:
Define α : Sn × {1, . . . , n} → {1, . . . , n} by α(σ, i) := σ(i).

(iii) Let G be a group and H ≤ G. Then G acts on the set X := G/H of left cosets of H in
G by left multiplication: g′ · gG := (g′g)G for all g′ ∈ G and gG ∈ G/H . Indeed, we have
e · gG = (eg)H = gH and

g′′ · (g′ · gH) = g′′ · g′gH = g′′g′gH = (g′′g′)gH = g′′g′ · gH.

(iv) Any group G acts on itself by conjugation: Given g ∈ G and h ∈ G, define g · h := ghg−1.
Indeed, we have e · h = ehe−1 = h and

g · (g′ · h) = g · g′h(g′)−1 = gg′h(g′)−1g−1 = (gg′)h(gg′)−1 = gg′ · h.

Theorem 4.3 (Cayley). Let G be a finite group of order n. Then G is isomorphic to a subgroup
of Sn.

Proof. Let X := G. Then G acts on X by left multiplication: for g ∈ G and h ∈ X , set α(g, h) := gh.
The associated homomorphism A : G → Sym(X) is injective. If A(g) = A(g′) then, in particular,
g = ge = A(g)(e) = A(g′)(e) = g′e = g′. Hence the image of A, which is a subgroup of Sym(X) ∼=
Sn, is isomorphic to G. �

Definition 4.4. Let G be a group, X a set, and α : G×X → X an action of G on X . Let x ∈ X
and g ∈ G. We define

(i) Gx := {g ∈ G | α(g, x) = x}, the stabiliser of x in G,
(ii) Gx := {α(g, x) | g ∈ G}, the orbit of x under G,
(iii) Xg := {x ∈ X | α(g, x) = x}, the set of g-fixed points,
(iv) XG := {x ∈ X | ∀g ∈ G : α(g, x) = x}, the set of G-fixed points, and
(v) G\X := {Gx | x ∈ X}, the set of orbits of the action α.

The set of orbits forms a partition of the set X . In fact it is the partition that stems from the
equivalence relation on X given by x ∼ y if and only if Gx = Gy.

Example 4.5.

(i) Consider the action of D3 on the set X := D3 of corners of an equilateral triangle. Let
x := i ∈ {0, 1, 2} = X . We have

Gx = {r0, si}, Gx = X, Xg =











X g = r0

∅ g ∈ {r1, r2}

{i} g = si

, XG = ∅, G\X = {X}

(ii) Let G be a group acting on X := G by conjugation. We have

Gx = {g ∈ G | gxg−1 = x} = {g ∈ G | g commutes with x} and XG = Z(G).
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Example 4.6. Consider necklaces of length n using k colours. For example, if n = 4 and k = 2,
the colours being red and blue, the possible necklaces are

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Note that, for example, the necklaces

bb

b

b

b

b

b

b

arise from the above through rotation and are therefore not considered different. What is the
number of necklaces of length n ∈ N using k ∈ N different colours? Let X be the set of all coloured
chains of length n using k colours, of which there are kn as every bead may have any colour.
Then the group Rn of rotations of a regular n-gon (which is isomorphic to (Z /nZ,+)) acts on X
by rotations and the number of necklaces is precisely the number of orbits |G\X | for this action.
Theorem 4.9 below provides a means to compute |G\X | by determining fixed sets.

Theorem 4.7 (Orbit-stabiliser theorem). Let G be a group and X a set. Further, let α : G×X →
X be an action of G on X . For every x ∈ X the map

Φx : G/Gx → Gx, gGx 7→ gx

is a G-equivariant bijection. In particular, |G| = |Gx||Gx| (x ∈ X) when G is finite.

Proof. First of all, the map Φx is well-defined: If gGx = g′Gx for some g, g′ ∈ G then g′ = g′e = gh
for some h ∈ Gx and therefore g′x = (gh)x = g(hx) = x. The map Φx is surjective by definition. To
see that it is injective, suppose Φx(g) = Φx(g

′) for some g, g′ ∈ G, i.e. gx = g′x. Then x = g−1g′,
i.e. g−1g′ ∈ Gx. Thus gGx = g′Gx.

Finally, given g, g′ ∈ G we have Φx(g · g′Gx) = Φx(gg
′Gx) = gg′x = g · (g′x) = g · Φx(g

′). That
is, Φx is G-equivariant. �

Example 4.8. Retain the notation of Example 4.5 (i). Consider 0 ∈ X = {0, 1, 2}, the set of
corners of an equilateral triangle. We see that indeed

6 = |G| = |Gx||Gx| = |{r0, s0}||{0, 1, 2}| = 2 · 3.

Returning to Theorem 4.7, the G-equivariance of the map Φx expresses that the actions of G
on G/Gx and the action of G on Gx are essentially the same, underlining the importance of the
left coset spaces of G by its subgroups.

The following Theorem allows us to compute the number of orbits of an action by counting the
number of fixed points for each element.

Theorem 4.9 (Burnside’s Lemma). Let G be a finite group and X a finite set. Further, let
α : G×X → X be an action of G on X . Then

|G\X | =
1

|G|

∑

g∈G

|Xg|.

Proof. In condensed form, this theorem can be proven as follows:
∑

g∈G

|Xg| =
∑

x∈X

|Gx|
4.7
=

∑

x∈X

|G|

|Gx|
= |G|

∑

x∈X

1

|Gx|
=

1

|G|

∑

Y ∈G\X

1 = |G||G\X |. �

Example 4.10. We discuss two example applications of Burnside’s Theorem 4.9.

(i) Let us return to Example 4.6. The group R = {r0, r1, . . . , rn−1} acts on the set X of
coloured chains of length n with k colours. By Theorem 4.9, the number of necklaces is

|R\X | =
1

n

∑

r∈R

|Xr|

Thus it suffices to count the number of fixed points of every element of R.
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(r0) Every chain is fixed by the neutral element, so |Xr0 | = |X | = kn.
(r1) A necklace is invariant under rotating every bead to the next precisely when every

bead has the same colour, so |Xr1 | = k.
(r2) Any two beads at distance 2 from each other must have the same colour. Thus, if 2|n,

we have |Xr2 | = k2. Otherwise |Xr2 | = k as in the case of r1.
(rm) The order ord(m) of m ∈ Z /nZ determines how much freedom there is for coloured

chains that are fixed by rm. Namely, |Xrm | = k
n

ord(m) .
Overall, we have

|R\X | =
1

n

∑

r∈R

|Xr| =
1

n

∑

r∈R

k
n

ord(r) =
1

n

∑

d|n

φ(d)k
n

d

where φ(d) is the number of elements of order d in Z /nZ, also known as Euler’s totient
function. Equivalently, φ(d) equals the number of integers between 1 and d which are
coprime to d. In particular, φ(p) = p − 1 for any prime p. For example, when n = 4 and
k = 2 we obtain

|R\X | =
1

4

(

φ(1) · 24 + φ(2) · 22 + φ(4) · 21
)

=
1 · 24 + 1 · 22 + 2 · 21

4
= 6.

Necklaces of certain kinds play a crucial role in the game Tantrix.
(ii) A flag consists of n ∈ N vertical stripes, each of which can be coloured by one of k ∈ N

colours. A flag can be put on a flag post from either side. Given n, k ∈ N, how many
pairwise different flags are there? For (n, k) = (3, 2), the options are:

4.1. Exercises.

(1) Consider the action of G := D3 on the set X := D3 by conjugation, i.e. g · x := gxg−1 for
all g ∈ G and x ∈ X . Determine all quantities of Definition 4.4.

(2) Consider the action of Sn on {1, . . . , n}. Show that the stabiliser of every i ∈ {1, . . . , n} is
isomorphic to Sn−1.

(3) Let α : G×X → X be an action of the group G on the set X .
(a) Show that for any x ∈ X and g ∈ G we have gGxg

−1 = Ggx. In particular, Gx = Gy
for some x, y ∈ X if and only if Gx and Gy are conjugate subgroups of G.

(b) Let G := D3 and X := {0, 1, 2} the set of corners of an equilateral triangle. Show that
r1s0r

−1
1 = s1 and r2s0r

−1
2 = s2 using the above.

(4) Work out Example 4.10 (ii).
(5) Let G be a group of order pn for some prime p and n ∈ N and let X be a finite set. Show

that |X | ≡ |XG| mod p. In particular, if p does not divide |X |, then the action has fixed
points. Hint : Consider the action of G on the non-fixed points X and apply Theorem 4.7.

(6) Group actions of infinite groups on infinite sets are of immense importance, too. For exam-
ple, let H := {z ∈ C | Im(z) > 0} be the upper half of the complex plane and let SL(2,R)
be the set of 2× 2 matrices with real entries and determinant 1. Then

g · z :=
az + b

cz + d
, where g =

(

a b
c d

)

defines an action of SL(2,R) on H. Convince yourself!

(a) How do the elements

(

1 1
0 1

)

and

(

0 −1
1 0

)

act?

(b) What is the stabiliser of the imaginary unit i ∈ C?
The elements of SL(2,R) are isometries of the upper half plane when it is equipped with
a certain, hyperbolic metric.
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5. References

[Che] is an introductory group theory course with a focus on the Rubik’s cube. The book [Lau03]
was used in the algebra course of Semester 2, 2019 here at The University of Newcastle. David
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encourages students from a broad range of subjects to learn about symmetry. Finally, [Gri07]
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