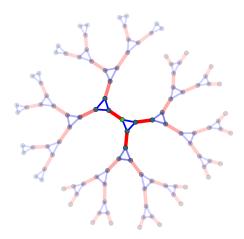
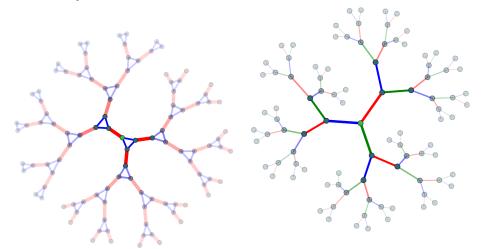
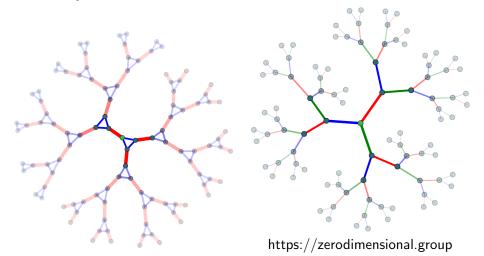
Think globally, act locally

Stephan Tornier

December 9, 2020







Automorphism groups of graphs: Why?

Automorphism groups of graphs: Why?

Ask me about it in gather.town!

From local to global structure

From local to global structure

Let H be a totally disconnected, locally compact group.

From local to global structure

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \le H \mid N \text{ is closed and cocompact in } H \},$$

 $QZ(H) := \{ h \in H \mid Z_H(h) \text{ is open} \}.$

From local to global structure

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \leq H \mid N \text{ is closed and cocompact in } H \},$$

 $QZ(H) := \{ h \in H \mid Z_H(h) \text{ is open} \}.$

Theorem (Burger-Mozes '00, T. '18)

Let Γ be a locally finite, connected graph.

From local to global structure

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \leq H \mid N \text{ is closed and cocompact in } H \},$$

 $QZ(H) := \{ h \in H \mid Z_H(h) \text{ is open} \}.$

Theorem (Burger-Mozes '00, T. '18)

Let Γ be a locally finite, connected graph. Further, let $H \leq \operatorname{Aut}(\Gamma)$ be closed, non-discrete and **locally semiprimitive**.

From local to global structure

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \leq H \mid N \text{ is closed and cocompact in } H \},$$

 $QZ(H) := \{ h \in H \mid Z_H(h) \text{ is open} \}.$

Theorem (Burger-Mozes '00, T. '18)

Let Γ be a locally finite, connected graph. Further, let $H \leq \operatorname{Aut}(\Gamma)$ be closed, non-discrete and locally semiprimitive. Then

• $H^{(\infty)}$ is minimal closed normal cocompact in H.

From local to global structure

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \leq H \mid N \text{ is closed and cocompact in } H \},$$

$$QZ(H) := \{ h \in H \mid Z_H(h) \text{ is open} \}.$$

Theorem (Burger-Mozes '00, T. '18)

Let Γ be a locally finite, connected graph. Further, let $H \leq \operatorname{Aut}(\Gamma)$ be closed, non-discrete and locally semiprimitive. Then

- lacksquare $H^{(\infty)}$ is minimal closed normal cocompact in H.
- $ext{QZ}(H)$ is maximal discrete normal, and non-cocompact in H.

From local to global structure

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \leq H \mid N \text{ is closed and cocompact in } H \},$$

 $QZ(H) := \{ h \in H \mid Z_H(h) \text{ is open} \}.$

Theorem (Burger-Mozes '00, T. '18)

Let Γ be a locally finite, connected graph. Further, let $H \leq \operatorname{Aut}(\Gamma)$ be closed, non-discrete and locally semiprimitive. Then

- ullet $H^{(\infty)}$ is minimal closed normal cocompact in H.
- $ext{@} \operatorname{QZ}(H)$ is maximal discrete normal, and non-cocompact in H.
- **③** every **closed normal subgroup** $N ext{ ≤ } H$ is either non-discrete cocompact and $N ext{ ≥ } H^{(\infty)}$, or discrete and $N ext{ ≤ } QZ(H)$.

From local to global structure

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \leq H \mid N \text{ is closed and cocompact in } H \},$$

 $QZ(H) := \{ h \in H \mid Z_H(h) \text{ is open} \}.$

Theorem (Burger-Mozes '00, T. '18)

Let Γ be a locally finite, connected graph. Further, let $H \leq \operatorname{Aut}(\Gamma)$ be closed, non-discrete and locally semiprimitive. Then

- **1** $H^{(\infty)}$ is minimal closed normal cocompact in H.
- $ext{@} \operatorname{QZ}(H)$ is maximal discrete normal, and non-cocompact in H.
- **③** every **closed normal subgroup** $N ext{ ≤ } H$ is either non-discrete cocompact and $N ext{ ≥ } H^{(\infty)}$, or discrete and $N ext{ ≤ } QZ(H)$.
- $H^{(\infty)}/\mathrm{QZ}(H^{(\infty)})$ admits non-trivial, minimal closed normal subgroups; finitely many, H-conjugate and topologically simple.

 T_d

 T_d

 T_d

 $B_{d,k}$

colour-preserving
$$gx \mapsto b$$

 T_d

 T_d

 $B_{d,k}$

$$g \\ colour-preserving \\ b \mapsto x \\ colour-preserving \\ gx \mapsto b \\ colour-pres$$

□▶→□▶→□▶→□▶□□ 夕久◎

 $B_{d,k}$

$$\begin{array}{c}
g \\
\downarrow gx \\
\downarrow gx$$

Definition

 $B_{d,k}$

 T_d

For $F \leq \operatorname{Aut}(B_{d,k})$

 $B_{d,k}$

$$\begin{array}{c}
g \\
\downarrow \\
colour-preserving \\
b \mapsto x
\end{array}$$

$$\begin{array}{c}
colour-preserving \\
gx \mapsto b
\end{array}$$

$$\begin{array}{c}
\sigma_k(g,x) \\
\downarrow \\
B_{d,k}
\end{array}$$

Definition

 $B_{d,k}$

 T_d

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$.

Definition

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$.

Definition

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) | \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$.

Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$.

Definition

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{ g \in \operatorname{Aut}(T_d) | \forall x \in V(T_d) : \sigma_k(g,x) \in F \}$.

Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then the group $U_k(F)$ is

Definition

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$.

Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then the group $U_k(F)$ is

• closed in $Aut(T_d)$,

Definition

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$.

Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then the group $U_k(F)$ is

- closed in $Aut(T_d)$,
- vertex-transitive, and

Definition

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$.

Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then the group $U_k(F)$ is

- closed in $Aut(T_d)$,
- vertex-transitive, and
- compactly generated.

Definition

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$.

Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then the group $U_k(F)$ is

- closed in $Aut(T_d)$,
- vertex-transitive, and
- compactly generated.

Question

Let $F \leq \operatorname{Aut}(B_{d,k})$.

Properties & Questions

Definition

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$.

Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then the group $U_k(F)$ is

- closed in $Aut(T_d)$,
- vertex-transitive, and
- compactly generated.

Question

Let $F \leq \operatorname{Aut}(B_{d,k})$. For $x \in V(T_d)$, what is the action that $U_k(F)_x$ induces on B(x,k)?

The compatibility condition (C)

Definition

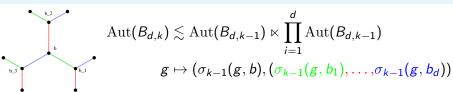
Let $F \leq \operatorname{Aut}(B_{d,k})$. Then $\operatorname{U}_k(F) \leq \operatorname{Aut}(T_d)$ satisfies (C) if and only if for all $x \in V(T_d)$ the actions $\operatorname{U}_k(F)_x \curvearrowright B(x,k)$ and $F \curvearrowright B_{d,k}$ are isomorphic.

Definition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then $\operatorname{U}_k(F) \leq \operatorname{Aut}(T_d)$ satisfies (C) if and only if for all $x \in V(T_d)$ the actions $\operatorname{U}_k(F)_x \curvearrowright B(x,k)$ and $F \curvearrowright B_{d,k}$ are isomorphic.

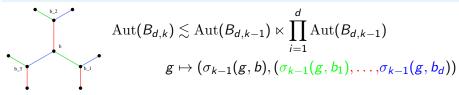
Definition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then $\operatorname{U}_k(F) \leq \operatorname{Aut}(T_d)$ satisfies (C) if and only if for all $x \in V(T_d)$ the actions $\operatorname{U}_k(F)_x \curvearrowright B(x,k)$ and $F \curvearrowright B_{d,k}$ are isomorphic.



Definition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then $\operatorname{U}_k(F) \leq \operatorname{Aut}(T_d)$ satisfies (C) if and only if for all $x \in V(T_d)$ the actions $\operatorname{U}_k(F)_x \curvearrowright B(x,k)$ and $F \curvearrowright B_{d,k}$ are isomorphic.

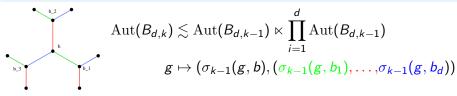


Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then $\operatorname{U}_k(F) \leq \operatorname{Aut}(T_d)$ satisfies (C) if and only

Definition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then $\operatorname{U}_k(F) \leq \operatorname{Aut}(T_d)$ satisfies (C) if and only if for all $x \in V(T_d)$ the actions $\operatorname{U}_k(F)_x \curvearrowright B(x,k)$ and $F \curvearrowright B_{d,k}$ are isomorphic.



Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then $\operatorname{U}_k(F) \leq \operatorname{Aut}(T_d)$ satisfies (C) if and only

$$\forall i \in \{1, \ldots, d\} \ \forall \ (\alpha, (\alpha_1, \ldots, \alpha_{i-1}, \alpha_i, \alpha_{i+1}, \ldots, \alpha_d)) \in F$$
$$\exists \ (\alpha_i, (?, \ldots, ?, \alpha, ?, \ldots, ?)) \in F.$$

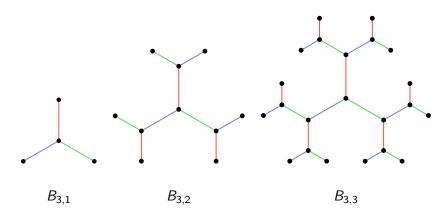
UGALY: A GAP package

Joint work with Khalil Hannouch.

UGALY: A GAP package

Joint work with Khalil Hannouch.

Joint work with Khalil Hannouch.



Joint work with Khalil Hannouch.

$$B_{3,1}$$
 $B_{3,2}$
 $B_{3,3}$

Joint work with Khalil Hannouch.

$$B_{3,1}$$

$$B_{3,2}$$

$$\begin{bmatrix}
7 & 6 \\
8 & 2 \\
3 & 1 \\
3 & 2 \\
1 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
6 & 3 \\
2 & 3 \\
2 & 10
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
8 & 2 \\
2 & 3 \\
2 & 10
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 3 \\
2 & 3 \\
2 & 10
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 3 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 3 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 3 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 3 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
4 & 2 \\
2 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 6 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 6 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 6 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 6 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 6 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 3 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 3 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 3 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 3 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 3 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 3 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 3 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 3 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 3 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 3 \\
7 & 1 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 3 \\
7 &$$

Joint work with Khalil Hannouch.

Create, analyse and find local actions of universal groups.

$$B_{3,1}$$

$$B_{3,2}$$

$$\begin{bmatrix}
7 & 6 \\
8 & 2 & 3 \\
1 & 3 & 4 \\
2 & 10 & 3 \\
3 & 2 & 10 & 3
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
8 & 2 & 3 \\
2 & 3 & 4 \\
2 & 10 & 3 \\
3 & 2 & 10
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 6 \\
8 & 2 & 3 \\
2 & 3 & 4 \\
2 & 3 & 4 \\
2 & 3 & 4 \\
2 & 3 & 4 \\
3 & 3 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix}$$

github.com/torniers/UGALY