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Motivation

Let G be a group.

Finite

Composition series:
1 = G0 E G1 E · · ·E Gn−1 E Gn = G where Gi/Gi−1 is simple.

Jordan-Hölder: Uniqueness of subquotients.

Classification of finite simple groups.

Infinite

Adian-Rabin ’55:
The isomorphism problem for finitely presented groups is undecidable.

Olshansky, Vaughan-Lee ’70:
There exist continuously many different varieties of groups.
(closed under homomorphic images, subgroups, cartesian products)
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Jordan-Hölder: Uniqueness of subquotients.

Classification of finite simple groups.

Infinite

Adian-Rabin ’55:
The isomorphism problem for finitely presented groups is undecidable.

Olshansky, Vaughan-Lee ’70:
There exist continuously many different varieties of groups.
(closed under homomorphic images, subgroups, cartesian products)

Stephan Tornier Groups acting on trees 3



Pure Math Seminar University of New South Wales 23.02.2021

Motivation

Let G be a group.

Finite

Composition series:
1 = G0 E G1 E · · ·E Gn−1 E Gn = G where Gi/Gi−1 is simple.
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Let G be a locally compact group.

1 // // G 0 // closed

normal
// G // // G/G 0 // //

���� ''

1

1 Aut(Γ)

Stephan Tornier Groups acting on trees 4



Pure Math Seminar University of New South Wales 23.02.2021

Let G be a locally compact group.

1 // // G 0 // closed

normal
// G // // G/G 0 // //

���� ''

1

1 Aut(Γ)

Stephan Tornier Groups acting on trees 4



Pure Math Seminar University of New South Wales 23.02.2021

Let G be a locally compact group.

1 // // G 0 // closed

normal
// G // // G/G 0 // //

���� ''

1

1 Aut(Γ)

Stephan Tornier Groups acting on trees 4



Pure Math Seminar University of New South Wales 23.02.2021

Let G be a locally compact group.
Every connected locally compact group is an inverse limit of Lie groups.

1 // // G 0 // closed

normal
// G // // G/G 0 // //

���� ''

1

1 Aut(Γ)

Stephan Tornier Groups acting on trees 4



Pure Math Seminar University of New South Wales 23.02.2021

Let G be a locally compact group.
Every connected locally compact group is an inverse limit of Lie groups.
(Hilbert’s 5th problem; Gleason, Yamabe, Montgomery-Zippin; 50’s)

1 // // G 0 // closed

normal
// G // // G/G 0 // //

���� ''

1

1 Aut(Γ)

Stephan Tornier Groups acting on trees 4



Pure Math Seminar University of New South Wales 23.02.2021

Let G be a locally compact group.
Every connected locally compact group is an inverse limit of Lie groups.
(Hilbert’s 5th problem; Gleason, Yamabe, Montgomery-Zippin; 50’s)

1 // // G 0 // closed

normal
// G // // G/G 0 // //

���� ''

1

1 Aut(Γ)

Stephan Tornier Groups acting on trees 4



Pure Math Seminar University of New South Wales 23.02.2021

Let G be a locally compact group.
Every connected locally compact group is an inverse limit of Lie groups.
(Hilbert’s 5th problem; Gleason, Yamabe, Montgomery-Zippin; 50’s)

1 // // G 0 // closed

normal
// G // // G/G 0 // //

���� ''

1

1 Aut(Γ)

Stephan Tornier Groups acting on trees 4



Pure Math Seminar University of New South Wales 23.02.2021

Let G be a locally compact group.
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Let G be a locally compact group such that G/G 0 is compactly generated.
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From local to global structure

Let H be a totally disconnected, locally compact group. Define

H(∞) :=
⋂
{N E H | N is closed and cocompact in H},

QZ(H) := {h ∈ H | ZH(h) is open}.

Theorem (Burger–Mozes ’00, T. ’18)

Let Γ be a locally finite, connected graph. Further, let H ≤ Aut(Γ) be
closed, non-discrete and locally semiprimitive. Then

1 H(∞) is minimal closed normal cocompact in H.

2 QZ(H) is maximal discrete normal, and non-cocompact in H.

3 every closed normal subgroup N EH is either non-discrete cocompact
and N D H(∞), or discrete and N EQZ(H).

4 H(∞)/QZ(H(∞)) admits non-trivial, minimal closed normal
subgroups; finitely many, H-conjugate and topologically simple.

Stephan Tornier Groups acting on trees 6
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1 H(∞) is minimal closed normal cocompact in H.

2 QZ(H) is maximal discrete normal, and non-cocompact in H.

3 every closed normal subgroup N EH is either non-discrete cocompact
and N D H(∞), or discrete and N EQZ(H).

4 H(∞)/QZ(H(∞)) admits non-trivial, minimal closed normal
subgroups; finitely many, H-conjugate and topologically simple.
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Universal Groups

Td

x g gx

Td

colour-preserving
b 7→ x

colour-preserving
gx 7→ b

Bd ,k

b σk(g , x) b

Bd ,k

Definition

For F ≤Aut(Bd ,k), set Uk(F ) :={g ∈Aut(Td) |∀x ∈V (Td) : σk(g , x)∈F}.
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Properties & Questions

Definition

For F ≤Aut(Bd ,k), set Uk(F ) :={g ∈Aut(Td) |∀x ∈V (Td) : σk(g , x)∈F}.

Proposition

Let F ≤ Aut(Bd ,k). Then the group Uk(F ) is

1 closed in Aut(Td),

2 vertex-transitive, and

3 compactly generated.

Question

Let F ≤ Aut(Bd ,k). For x ∈ V (Td), what is the action that Uk(F )x
induces on B(x , k)?
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The compatibility condition (C)

Definition

Let F ≤Aut(Bd ,k). Then Uk(F ) ≤ Aut(Td) satisfies (C) if and only if for
all x ∈V (Td) the actions Uk(F )x y B(x , k) and F y Bd ,k are isomorphic.

b

b_2

b_1b_3

Aut(Bd ,k) . Aut(Bd ,k−1) n
d∏

i=1

Aut(Bd ,k−1)

g 7→ (σk−1(g , b), (σk−1(g , b1), . . . ,σk−1(g , bd))

Proposition

Let F ≤Aut(Bd ,k). Then Uk(F ) ≤ Aut(Td) satisfies (C) if and only

∀i ∈ {1, . . . , d} ∀ (α, (α1, . . . , αi−1, αi , αi+1, . . . , αd)) ∈ F

∃ (αi , ( ?, . . . , ? , α, ? , . . . , ? )) ∈ F .
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UGALY: A GAP package

Joint work with Khalil Hannouch.

Create, analyse and find local actions of universal groups.

B3,1 B3,2 B3,3
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Towards a classification of closed vertex-transitive groups

Definition

Let H ≤ Aut(Td). The (Pk)-closure of H is

H(Pk ) := {g ∈ Aut(Td) | ∀x ∈ V (Td) ∃h ∈ H : g |B(x ,k) = h|B(x ,k)}.

The group H is (Pk)-closed if H(Pk ) = H.

Any subgroup H ≤ Aut(Td) is approximated by its (Pk)-closures:

H(P1) ≥ H(P2) ≥ · · · ≥ H(Pk ) ≥ · · ·H ≥ H and
⋂
k∈N

H(Pk ) = H.

Proposition

Let F ≤ Aut(Bd ,k). Then Uk(F ) ≤ Aut(Td) is (Pk)-closed.
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