Discovering Symmetry

Stephan Tornier

April 21, 2021

Symmetry

Beauty

Efficiency

21.04.2021

Cost-effectiveness

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е						
<i>s</i> ₁						
s ₂						
s 3						
$r_{1/3}$						
$r_{2/3}$						

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
e	e					
<i>s</i> ₁						
<i>s</i> ₂						
s 3						
$r_{1/3}$						
$r_{1/3} = r_{2/3}$						

	e	s_1	<i>s</i> ₂	<i>s</i> ₃	$r_{1/3}$	$r_{2/3}$
е	е	<i>s</i> ₁				
<i>s</i> ₁						
<i>s</i> ₂						
s 3						
$r_{1/3}$						
$r_{2/3}$						

	e	s_1	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
s_1						·
<i>s</i> ₂						
<i>s</i> ₃						
$r_{1/3}$						
$r_{2/3}$						

BMath Seminar

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$	
e	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$	
s_1	s_1						
<i>s</i> ₂	<i>s</i> ₂						
<i>5</i> 3	<i>5</i> 3						
$r_{1/3}$	$r_{1/3}$						
$r_{2/3}$	$r_{2/3}$						

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$	
е	е	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$	
s_1	s_1	e					
<i>s</i> ₂	<i>s</i> ₂						
5 3	<i>5</i> 3						
$r_{1/3}$	$r_{1/3}$						
$r_{2/3}$	$r_{2/3}$						

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
e	e	<i>s</i> ₁	s ₂	<i>s</i> ₃	$r_{1/3}$	$r_{2/3}$
s_1	s_1	e				
s ₂	<i>s</i> ₂		e			
<i>5</i> 3	<i>5</i> 3			e		
$r_{1/3}$	$r_{1/3}$					
$r_{2/3}$	$r_{2/3}$					

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е	е	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
s_1	s_1	e				
<i>s</i> ₂	<i>s</i> ₂		e			
s 3	s 3			e		
$r_{1/3}$	$r_{1/3}$				$r_{2/3}$	
$r_{2/3}$	$r_{2/3}$					

	e	<i>s</i> ₁	<i>s</i> ₂	s 3	$r_{1/3}$	$r_{2/3}$
e	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
s_1	s_1	e			·	
<i>s</i> ₂	<i>s</i> ₂		e			
<i>5</i> 3	<i>5</i> 3			e		
$r_{1/3}$	$r_{1/3}$				$r_{2/3}$	е
$r_{2/3}$	r _{2/3}				e	

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
e	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
s_1	s_1	e			·	
<i>s</i> ₂	<i>s</i> ₂		e			
5 3	<i>5</i> 3			e		
$r_{1/3}$	$r_{1/3}$				$r_{2/3}$	е
$r_{2/3}$	$r_{2/3}$				e	$r_{1/3}$

Consider the figure below. Find and give names to all its symmetries, and record their compositions in the table.

Complete the following table of addition of integers modulo 4.

+4	0	1	2	3
0				
1				
2				
3		0		

Consider the mathematical expression below.

$$a + b + c \times d$$

For every choice of a, b, c and d, it assumes a value. For example:

$$(-1,3,2,4) \mapsto -1+3+2\times 4=10,$$

$$(-1,4,2,3) \mapsto -1+4+2\times 3=9.$$

Find and give names to all rearrangements of the variables *a*, *b*, *c* and *d* that leave the value of the expression unchanged for *every* choice, and record their compositions in the table.

Note: By the above, swapping b and d is no such rearrangement.

Consider the image below. Find and give names to all its symmetries, and record their compositions in the table.

The University of Newcastle

Addition

modulo 4

	e	h	v	m
е	e	h	V	m
h	h	e	m	v
v	V	m	e	h
m	m	V	h	e

$$a + b + c \times d$$

Addition

modulo 4

	e	h	v	m
е	e	h	V	m
h	h	е	m	v
V	V	m	e	h
m	m	V	h	e

$$a + b + c \times d$$

Addition

ロト 4回ト 4 恵ト 4 恵ト ・ 恵・ 夕久(で

	e	h	v	m
е	e	h	v	m
h	h	е	m	v
V	v	m	e	h
m	m	V	h	e

$$a \underbrace{+}_{s} b + c \underbrace{\times}_{t} c$$

Addition modulo 4

	e	h	v	m
е	e	h	V	m
h	h	е	m	V
V	V	m	e	h
m	m	V	h	е

$$a \overset{b}{\underset{s}{\leftarrow}} b + c \overset{b}{\underset{t}{\swarrow}} c$$

Addition modulo 4

	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
2	2	Λ	1	2

	е	r _{1/4}	r _{2/4}	r _{3/4}
е	е	r _{1/4}	r _{2/4}	r _{3/4}
$r_{1/4}$	$r_{1/4}$	r _{2/4}	r _{3/4}	e
$r_{2/4}$	$r_{2/4}$	r _{3/4}	e	r _{1/4}
r _{3/4}	r _{3/4}	е	r _{1/4}	r _{2/4}

More symmetry

More symmetry

Symmetry in mathematics

Group Theory

Group Theory

Group Theory

Group Theory

 D_6

Group Theory

Linear Algebra

 D_{ϵ}

Group Theory

 D_6

Linear Algebra

 $GL(n, \mathbb{R})$

Group Theory

 D_6

Linear Algebra

Group Theory

Linear Algebra

Number Theory

Group Theory

 D_6

Linear Algebra

Number Theory

Group Theory

Group Theory

 D_6

Linear Algebra

Number Theory

 $K \subseteq E$ fields

Group Theory

 D_6

Linear Algebra

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

Group Theory

 D_6

Linear Algebra

$$K \subseteq E$$
 fields

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$$
$$\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$$

$$\mathbb{F}_p \subseteq \mathbb{F}_p(X)$$

Group Theory

 D_6

Linear Algebra

 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

$$K \subseteq E$$
 fields

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$$
$$\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$$

Group Theory

Linear Algebra

Number Theory

$$\mathcal{K} \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

Aut(E/K)

Differential Equations

 D_6

Group Theory

 D_6

Linear Algebra

 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

 $K \subseteq E$ fields

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$$

$$\mathbb{F}_{p} \subseteq \overline{\mathbb{F}_{p}(X)}$$

Differential Equations

$$\Delta f = 0$$

Group Theory

Linear Algebra

Number Theory

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

 $\operatorname{Aut}(E/K)$

Differential Equations

 D_6

$$\Delta f = 0$$

Group Theory

Linear Algebra

Number Theory

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

 $\operatorname{Aut}(E/K)$

Differential Equations

 D_6

$$\Delta f = 0$$

Group Theory

 D_6

Linear Algebra

 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

$$K \subseteq E$$
 fields

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$$
$$\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$$

$$\operatorname{Aut}(E/K)$$

Differential Equations

$$\Delta f = 0$$

Group Theory

 D_6

Linear Algebra

 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

$$\mathbb{F}_p\subseteq\overline{\mathbb{F}_p(X)}$$

 $\operatorname{Aut}(E/K)$

Differential Equations

$$\Delta f = 0$$

Group Theory

 D_6

Linear Algebra

 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

$$\mathbb{F}_p\subseteq\overline{\mathbb{F}_p(X)}$$

 $\operatorname{Aut}(E/K)$

Differential Equations

$$\Delta f = 0$$

Group Theory

 D_6

Linear Algebra

 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

21.04.2021

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

$$\operatorname{Aut}(E/K)$$

Differential Equations

$$\Delta f = 0$$

Differential Geometry

Group Theory

 D_6

Linear Algebra

 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

$$\mathbb{F}_{\rho}\subseteq\overline{\mathbb{F}_{\rho}(X)}$$

$$\operatorname{Aut}(E/K)$$

Differential Equations

$$\Delta f = 0$$

Graph Theory

Group Theory

 D_6

Linear Algebra

 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

$$\mathbb{F}_{\rho}\subseteq\overline{\mathbb{F}_{\rho}(X)}$$

$$\operatorname{Aut}(E/K)$$

Differential Equations

$$\Delta f = 0$$

Graph Theory

MATH 3120

 D_6

Linear Algebra

 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

 $K \subseteq E$ fields

 $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

Aut(E/K)

Differential Equations

$$\Delta f = 0$$

Differential Geometry

Discovering Symmetry

MATH 3120

 D_6

MATH 1120, MATH 2320

 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

 $K \subseteq E$ fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

 $\mathbb{F}_{p}\subseteq\overline{\mathbb{F}_{p}(X)}$

Aut(E/K)

Differential Equations

$$\Delta f = 0$$

Differential Geometry

Differential Geometry

MATH 3120

 D_6

MATH 1120, MATH 2320

 $GL(n, \mathbb{R})$

MATH 3170

 $K \subseteq E$ fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

$$\mathbb{F}_p\subseteq\overline{\mathbb{F}_p(X)}$$

Aut(E/K)

Differential Equations

$$\Delta f = 0$$

Differential Geometry

MATH 3120

 D_6

MATH 1120, MATH 2320

 $GL(n, \mathbb{R})$

MATH 3170

 $K \subseteq E$ fields

 $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

Aut(E/K)

MATH 2800, MATH 3700

$$\Delta f = 0$$

Differential Geometry

 D_6

MATH 1120, MATH 2320

 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

MATH 3170

 $K \subseteq E$ fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

$$\mathbb{F}_{p}\subseteq \overline{\mathbb{F}_{p}(X)}$$

 $\operatorname{Aut}(E/K)$

MATH 2800, MATH 3700

$$\Delta f = 0$$

MATH 4104

WATH 4104

MATH 1120, MATH 2320

MATH 3170

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

$$\mathbb{F}_p\subseteq \overline{\mathbb{F}_p(X)}$$

$$\operatorname{Aut}(E/K)$$

MATH 2800, MATH 3700

 D_6

$$\Delta f = 0$$

MATH 4104

MATH 1510, MATH 4105

Biology

Biology

Computer Science

Computer Science

And everywhere else

Physics

Engineering

Evolution

Information Technology

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ