Discovering Symmetry

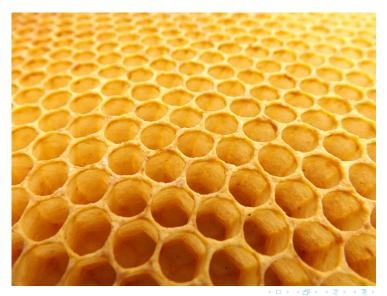
Stephan Tornier

April 21, 2021

Symmetry

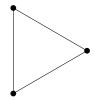
Beauty

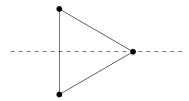
Efficiency

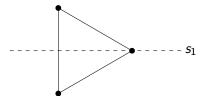


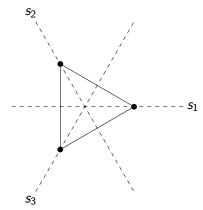
21.04.2021

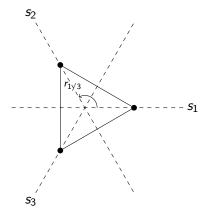
Cost-effectiveness

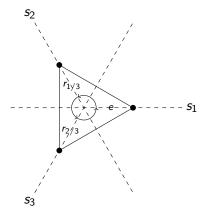


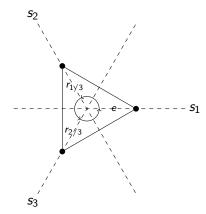




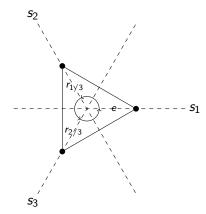




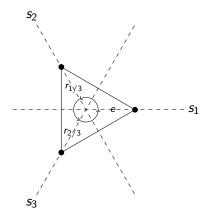




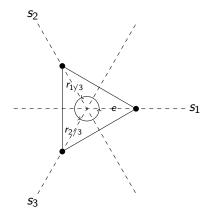
	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е						
<i>s</i> ₁						
s ₂						
s 3						
$r_{1/3}$						
$r_{2/3}$						



	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
e	e					
<i>s</i> ₁						
<i>s</i> ₂						
s 3						
$r_{1/3}$						
$r_{1/3} = r_{2/3}$						

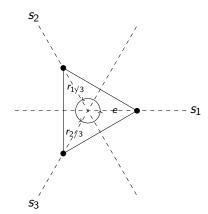


	e	s_1	<i>s</i> ₂	<i>s</i> ₃	$r_{1/3}$	$r_{2/3}$
е	е	<i>s</i> ₁				
<i>s</i> ₁						
<i>s</i> ₂						
s 3						
$r_{1/3}$						
$r_{2/3}$						

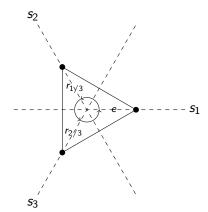


	e	s_1	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
s_1						·
<i>s</i> ₂						
<i>s</i> ₃						
$r_{1/3}$						
$r_{2/3}$						

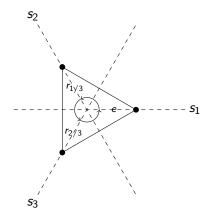
BMath Seminar



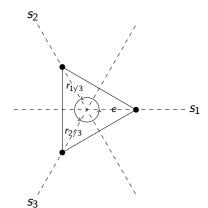
	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$	
e	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$	
s_1	s_1						
<i>s</i> ₂	<i>s</i> ₂						
<i>5</i> 3	<i>5</i> 3						
$r_{1/3}$	$r_{1/3}$						
$r_{2/3}$	$r_{2/3}$						



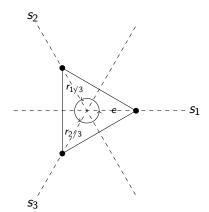
	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$	
е	е	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$	
s_1	s_1	e					
<i>s</i> ₂	<i>s</i> ₂						
5 3	<i>5</i> 3						
$r_{1/3}$	$r_{1/3}$						
$r_{2/3}$	$r_{2/3}$						



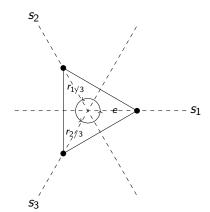
	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
e	e	<i>s</i> ₁	s ₂	<i>s</i> ₃	$r_{1/3}$	$r_{2/3}$
s_1	s_1	e				
s ₂	<i>s</i> ₂		e			
<i>5</i> 3	<i>5</i> 3			e		
$r_{1/3}$	$r_{1/3}$					
$r_{2/3}$	$r_{2/3}$					



	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е	е	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
s_1	s_1	e				
<i>s</i> ₂	<i>s</i> ₂		e			
s 3	s 3			e		
$r_{1/3}$	$r_{1/3}$				$r_{2/3}$	
$r_{2/3}$	$r_{2/3}$					

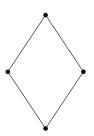


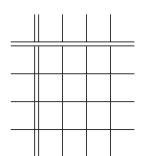
	e	<i>s</i> ₁	<i>s</i> ₂	s 3	$r_{1/3}$	$r_{2/3}$
e	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
s_1	s_1	e			·	
<i>s</i> ₂	<i>s</i> ₂		e			
<i>5</i> 3	<i>5</i> 3			e		
$r_{1/3}$	$r_{1/3}$				$r_{2/3}$	е
$r_{2/3}$	r _{2/3}				e	



	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
e	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
s_1	s_1	e			·	
<i>s</i> ₂	<i>s</i> ₂		e			
5 3	<i>5</i> 3			e		
$r_{1/3}$	$r_{1/3}$				$r_{2/3}$	е
$r_{2/3}$	$r_{2/3}$				e	$r_{1/3}$

Consider the figure below. Find and give names to all its symmetries, and record their compositions in the table.





Complete the following table of addition of integers modulo 4.

+4	0	1	2	3
0				
1				
2				
3		0		

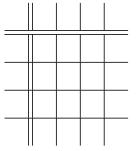
Consider the mathematical expression below.

$$a + b + c \times d$$

For every choice of a, b, c and d, it assumes a value. For example:

$$(-1,3,2,4) \mapsto -1+3+2\times 4=10,$$

$$(-1,4,2,3) \mapsto -1+4+2\times 3=9.$$

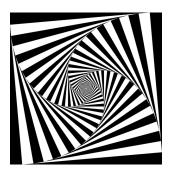


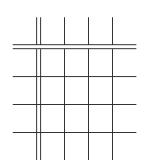
Find and give names to all rearrangements of the variables *a*, *b*, *c* and *d* that leave the value of the expression unchanged for *every* choice, and record their compositions in the table.

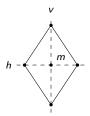
Note: By the above, swapping b and d is no such rearrangement.

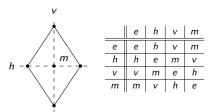
Consider the image below. Find and give names to all its symmetries, and record their compositions in the table.

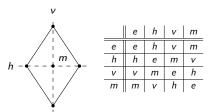
The University of Newcastle





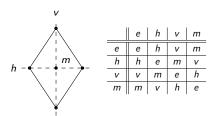


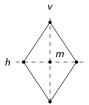




Addition

modulo 4



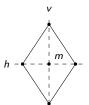


	e	h	v	m
е	e	h	V	m
h	h	e	m	v
v	V	m	e	h
m	m	V	h	e

$$a + b + c \times d$$

Addition

modulo 4

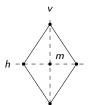


	e	h	v	m
е	e	h	V	m
h	h	е	m	v
V	V	m	e	h
m	m	V	h	e

$$a + b + c \times d$$

Addition

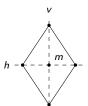
ロト 4回ト 4 恵ト 4 恵ト ・ 恵・ 夕久(で



	e	h	v	m
е	e	h	v	m
h	h	е	m	v
V	v	m	e	h
m	m	V	h	e

$$a \underbrace{+}_{s} b + c \underbrace{\times}_{t} c$$

Addition modulo 4



	e	h	v	m
е	e	h	V	m
h	h	е	m	V
V	V	m	e	h
m	m	V	h	е

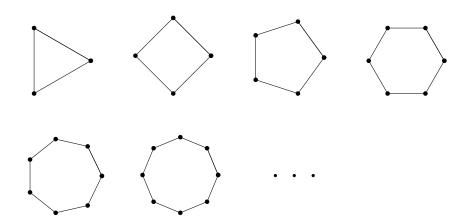
$$a \overset{b}{\underset{s}{\leftarrow}} b + c \overset{b}{\underset{t}{\swarrow}} c$$

Addition modulo 4

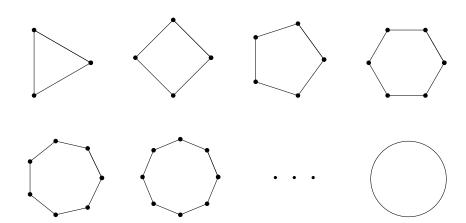
	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
2	2	Λ	1	2

	е	r _{1/4}	r _{2/4}	r _{3/4}
е	е	r _{1/4}	r _{2/4}	r _{3/4}
$r_{1/4}$	$r_{1/4}$	r _{2/4}	r _{3/4}	e
$r_{2/4}$	$r_{2/4}$	r _{3/4}	e	r _{1/4}
r _{3/4}	r _{3/4}	е	r _{1/4}	r _{2/4}

More symmetry



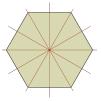
More symmetry



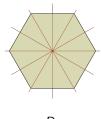
Symmetry in mathematics

Group Theory

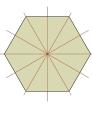
Group Theory



Group Theory

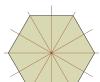


Group Theory

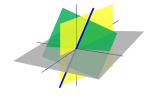


 D_6

Group Theory

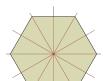


Linear Algebra



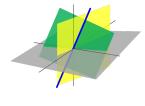
 D_{ϵ}

Group Theory



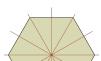
 D_6

Linear Algebra



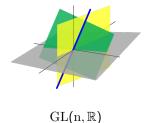
 $GL(n, \mathbb{R})$

Group Theory

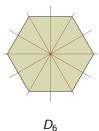


 D_6

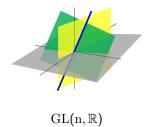
Linear Algebra



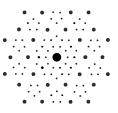
Group Theory



Linear Algebra



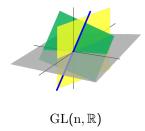
Number Theory



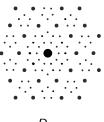
Group Theory

 D_6

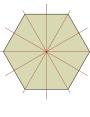
Linear Algebra

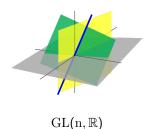


Number Theory

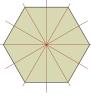


Group Theory



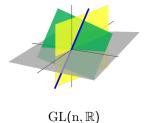


Group Theory



 D_6

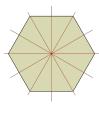
Linear Algebra



Number Theory

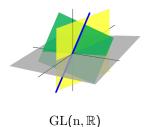
 $K \subseteq E$ fields

Group Theory



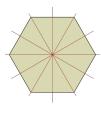
 D_6

Linear Algebra



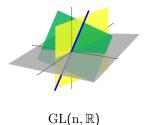
$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

Group Theory



 D_6

Linear Algebra

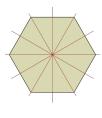


$$K \subseteq E$$
 fields

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$$
$$\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$$

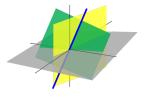
$$\mathbb{F}_p \subseteq \mathbb{F}_p(X)$$

Group Theory



 D_6

Linear Algebra

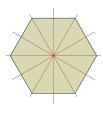


 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

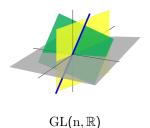
$$K \subseteq E$$
 fields

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$$
$$\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$$

Group Theory



Linear Algebra



Number Theory

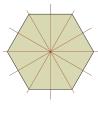
$$\mathcal{K} \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

Aut(E/K)

Differential Equations

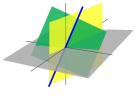
 D_6

Group Theory



 D_6

Linear Algebra



 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

 $K \subseteq E$ fields

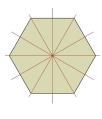
$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$$

$$\mathbb{F}_{p} \subseteq \overline{\mathbb{F}_{p}(X)}$$

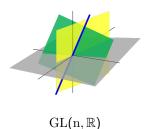
Differential Equations

$$\Delta f = 0$$

Group Theory



Linear Algebra



Number Theory

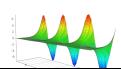
$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

 $\operatorname{Aut}(E/K)$

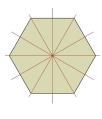
Differential Equations

 D_6

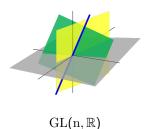
$$\Delta f = 0$$



Group Theory



Linear Algebra



Number Theory

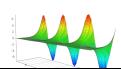
$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

 $\operatorname{Aut}(E/K)$

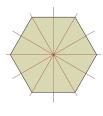
Differential Equations

 D_6

$$\Delta f = 0$$

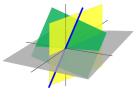


Group Theory



 D_6

Linear Algebra



 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

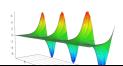
$$K \subseteq E$$
 fields

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$$
$$\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$$

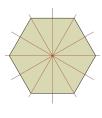
$$\operatorname{Aut}(E/K)$$

Differential Equations

$$\Delta f = 0$$

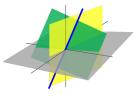


Group Theory



 D_6

Linear Algebra



 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

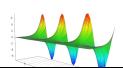
$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

$$\mathbb{F}_p\subseteq\overline{\mathbb{F}_p(X)}$$

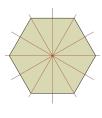
 $\operatorname{Aut}(E/K)$

Differential Equations

$$\Delta f = 0$$

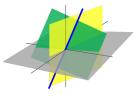


Group Theory



 D_6

Linear Algebra



 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

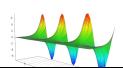
$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

$$\mathbb{F}_p\subseteq\overline{\mathbb{F}_p(X)}$$

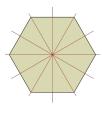
 $\operatorname{Aut}(E/K)$

Differential Equations

$$\Delta f = 0$$

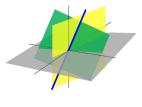


Group Theory



 D_6

Linear Algebra



 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

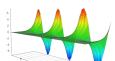
21.04.2021

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

$$\operatorname{Aut}(E/K)$$

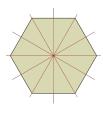
Differential Equations

$$\Delta f = 0$$



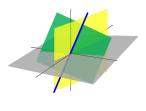
Differential Geometry

Group Theory



 D_6

Linear Algebra



 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

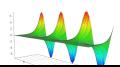
$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

$$\mathbb{F}_{\rho}\subseteq\overline{\mathbb{F}_{\rho}(X)}$$

$$\operatorname{Aut}(E/K)$$

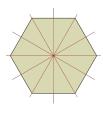
Differential Equations

$$\Delta f = 0$$



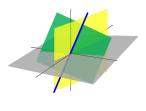
Graph Theory

Group Theory



 D_6

Linear Algebra



 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

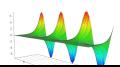
$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

$$\mathbb{F}_{\rho}\subseteq\overline{\mathbb{F}_{\rho}(X)}$$

$$\operatorname{Aut}(E/K)$$

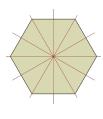
Differential Equations

$$\Delta f = 0$$



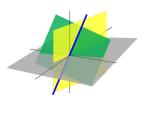
Graph Theory

MATH 3120



 D_6

Linear Algebra



 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

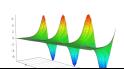
 $K \subseteq E$ fields

 $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

Aut(E/K)

Differential Equations

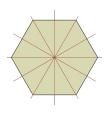
$$\Delta f = 0$$



Differential Geometry

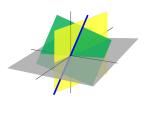
Discovering Symmetry

MATH 3120



 D_6

MATH 1120, MATH 2320



 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

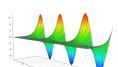
 $K \subseteq E$ fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

 $\mathbb{F}_{p}\subseteq\overline{\mathbb{F}_{p}(X)}$

Aut(E/K)

Differential Equations

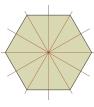
$$\Delta f = 0$$



Differential Geometry

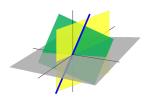
Differential Geometry

MATH 3120



 D_6

MATH 1120, MATH 2320



 $GL(n, \mathbb{R})$

MATH 3170

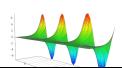
 $K \subseteq E$ fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

$$\mathbb{F}_p\subseteq\overline{\mathbb{F}_p(X)}$$

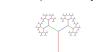
Aut(E/K)

Differential Equations

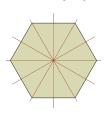
$$\Delta f = 0$$



Differential Geometry

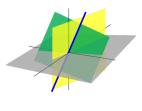


MATH 3120



 D_6

MATH 1120, MATH 2320



 $GL(n, \mathbb{R})$

MATH 3170

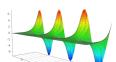
 $K \subseteq E$ fields

 $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

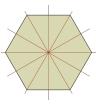
Aut(E/K)

MATH 2800, MATH 3700

$$\Delta f = 0$$

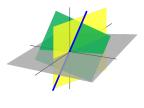


Differential Geometry



 D_6

MATH 1120, MATH 2320



 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

MATH 3170

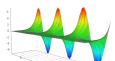
 $K \subseteq E$ fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

$$\mathbb{F}_{p}\subseteq \overline{\mathbb{F}_{p}(X)}$$

 $\operatorname{Aut}(E/K)$

MATH 2800, MATH 3700

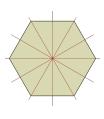
$$\Delta f = 0$$



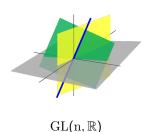
MATH 4104

WATH 4104





MATH 1120, MATH 2320



MATH 3170

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

$$\mathbb{F}_p\subseteq \overline{\mathbb{F}_p(X)}$$

$$\operatorname{Aut}(E/K)$$

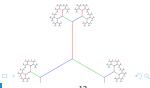
MATH 2800, MATH 3700

 D_6

$$\Delta f = 0$$

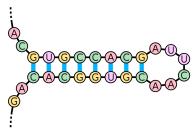
MATH 4104

MATH 1510, MATH 4105

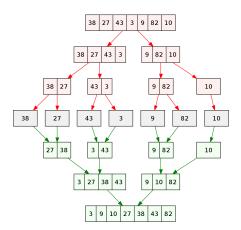


Biology

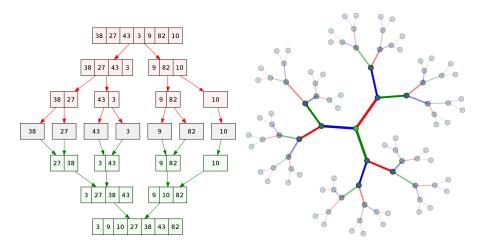
Biology



Computer Science



Computer Science



And everywhere else



Physics

Engineering

Evolution

Information Technology

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ