Discovering Symmetry

Stephan Tornier

June 2, 2021

Symmetry

Beauty

Efficiency

Stephan Tornier

Cost-effectiveness

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е						
<i>s</i> ₁						
<i>s</i> ₂						
s 3						
$r_{1/3}$						
$r_{2/3}$						

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е	е					
<i>s</i> ₁						
s ₂						
s 3						
$r_{1/3}$						
$r_{1/3} \over r_{2/3}$						

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е	е	<i>s</i> ₁				
<i>s</i> ₁						
s ₂						
s 3						
$r_{1/3}$						
$r_{2/3}$						

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
s_1						
<i>s</i> ₂						
<i>5</i> 3						
$r_{1/3}$						
$r_{2/3}$						

	e	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	$r_{1/3}$	$r_{2/3}$
е	е	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
s_1	s_1					
<i>s</i> ₂	<i>s</i> ₂					
<i>S</i> 3	<i>S</i> 3					
$r_{1/3}$	$r_{1/3}$					
$r_{2/3}$	$r_{2/3}$					

	e	<i>s</i> ₁	s ₂	<i>s</i> ₃	$r_{1/3}$	$r_{2/3}$
е	е	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
s_1	s_1	e				
<i>s</i> ₂	<i>s</i> ₂					
<i>S</i> 3	<i>S</i> 3					
$r_{1/3}$	$r_{1/3}$					
$r_{2/3}$	$r_{2/3}$					

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$	
е	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$	
s_1	s_1	e					
<i>s</i> ₂	<i>s</i> ₂		e				
s 3	s 3			e			
$r_{1/3}$	$r_{1/3}$						
$r_{2/3}$	$r_{2/3}$						

	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$	
e	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$	
s_1	s_1	e					
<i>s</i> ₂	<i>s</i> ₂		e				
<i>5</i> 3	<i>5</i> 3			e			
$r_{1/3}$	$r_{1/3}$				$r_{2/3}$		
$r_{2/3}$	$r_{2/3}$						

	e	s_1	s ₂	s 3	$r_{1/3}$	$r_{2/3}$	
е	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$	
s_1	s_1	e					
<i>s</i> ₂	<i>s</i> ₂		e				
s 3	s 3			e			
$r_{1/3}$	$r_{1/3}$				$r_{2/3}$	е	
$r_{2/3}$	$r_{2/3}$				e		

		e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
	e	e	<i>s</i> ₁	s ₂	<i>s</i> ₃	$r_{1/3}$	$r_{2/3}$
•	s_1	s_1	e			·	•
	<i>s</i> ₂	<i>s</i> ₂		e			
	<i>5</i> 3	<i>5</i> 3			e		
	$r_{1/3}$	$r_{1/3}$				$r_{2/3}$	е
	$r_{2/3}$	$r_{2/3}$				e	$r_{1/3}$

Consider the figure below. Find and give names to all its symmetries, and record their compositions in the table.

Complete the following table of addition of integers modulo 4.

+4	0	1	2	3
0				
1				
2				
3		0		

Consider the mathematical expression below.

$$a + b + c \times d$$

For every choice of a, b, c and d, it assumes a value. For example:

$$(-1,3,2,4) \mapsto -1+3+2\times 4=10,$$

$$(-1,4,2,3) \mapsto -1+4+2\times 3=9.$$

Find and give names to all rearrangements of the variables *a*, *b*, *c* and *d* that leave the value of the expression unchanged for *every* choice, and record their compositions in the table.

Note: By the above, swapping b and d is no such rearrangement.

Consider the image below. Find and give names to all its symmetries, and record their compositions in the table.

m

m

Results & comparison

Addition

modulo 4

	e	h	v	m
е	e	h	V	m
h	h	е	m	V
V	V	m	e	h
m	m	V	h	e

$$a + b + c \times d$$

Addition

	e	h	v	m
е	e	h	V	m
h	h	е	m	v
V	V	m	e	h
m	m	V	h	е

$$a + b + c \times d$$

Addition

modulo 4

	e	h	v	m
е	e	h	V	m
h	h	е	m	V
v	v	m	e	h
m	m	V	h	e

$$a + b + c \times d$$

Addition modulo 4

	e	h	v	m
е	e	h	V	m
h	h	е	m	v
V	V	m	e	h
m	m	V	h	e

$$a \underbrace{\overset{b}{\overset{b}{\overset{}}{\overset{}}{\overset{}}}}_{s} b + c \underbrace{\overset{b}{\overset{b}{\overset{}}{\overset{}}{\overset{}}}}_{t} c$$

Addition modulo 4

	е	r _{1/4}	r _{2/4}	r _{3/4}
е	е	r _{1/4}	r _{2/4}	r _{3/4}
r _{1/4}	$r_{1/4}$	r _{2/4}	r _{3/4}	e
r _{2/4}	$r_{2/4}$	r _{3/4}	e	r _{1/4}
r _{3/4}	r _{3/4}	е	r _{1/4}	r _{2/4}

More symmetry

More symmetry

Symmetry in Mathematics

Group Theory

Group Theory

Linear Algebra

Number Theory

 $K \subseteq E$ fields

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

Linear Algebra

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

Linear Algebra

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

 $\mathcal{K} \subseteq E$ fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_{\rho} \subseteq \overline{\mathbb{F}_{\rho}(X)}$ $\mathrm{Aut}(E/\mathcal{K})$

Number Theory

Differential Equations

Linear Algebra

Number Theory

$$\mathcal{K} \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_{\rho} \subseteq \overline{\mathbb{F}_{\rho}(X)}$

$$\operatorname{Aut}(E/K)$$

Differential Equations
$$\Delta f = 0$$

Group Theory

Linear Algebra

Number Theory

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_{p} \subseteq \overline{\mathbb{F}_{p}(X)}$

Aut(E/K)

Differential Equations

Linear Algebra

Number Theory

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_{\rho} \subseteq \overline{\mathbb{F}_{\rho}(X)}$

Aut(E/K)

Differential Equations

<ロト <回 > < 巨 > < 巨 > く 巨 > つ Q ()

Group Theory

Linear Algebra

Number Theory

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_{p} \subseteq \overline{\mathbb{F}_{p}(X)}$

Differential Equations

Differential Geometry

Group Theory

Linear Algebra

Number Theory

 $K \subseteq E$ fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

 $\operatorname{Aut}(E/K)$

Differential Equations

Differential Geometry

Linear Algebra

Number Theory

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

Differential Equations

Differential Geometry

O(1, n)

Group Theory

Linear Algebra

Number Theory

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

Differential Equations

Differential Geometry

Graph Theory

Group Theory

Linear Algebra

Number Theory

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

Differential Equations

Differential Geometry

Graph Theory

Linear Algebra

 $GL(n, \mathbb{R})$

Number Theory

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

Differential Equations

Differential Geometry

Graph Theory

 $\operatorname{Aut}(T_d)$

Symmetry in Biology

Symmetry in Biology

Symmetry in Computer Science

Symmetry in Computer Science

And everywhere else...

Physics

Evolution

Music

