Groups acting on trees from finite combinatorial data

Stephan Tornier

June 11, 2021

Summary

Summary

Summary

https://zerodimensional.group

Let H be a totally disconnected, locally compact group.

University of Western Australia

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \leq H \mid N \text{ is closed and cocompact in } H \},$$

$$QZ(H) := \{ h \in H \mid Z_H(h) \text{ is open} \} \supseteq \bigcup \{ N \unlhd H \mid N \text{ is discrete} \}.$$

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \leq H \mid N \text{ is closed and cocompact in } H \},$$

$$QZ(H) := \{ h \in H \mid Z_H(h) \text{ is open} \} \supseteq \bigcup \{ N \subseteq H \mid N \text{ is discrete} \}.$$

Theorem (Burger-Mozes '00, T. '18)

Let Γ be a locally finite, connected graph.

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \leq H \mid N \text{ is closed and cocompact in } H \},$$

$$QZ(H) := \{ h \in H \mid Z_H(h) \text{ is open} \} \supseteq \bigcup \{ N \subseteq H \mid N \text{ is discrete} \}.$$

Theorem (Burger-Mozes '00, T. '18)

Let Γ be a locally finite, connected graph. Further, let $H \leq \operatorname{Aut}(\Gamma)$ be closed, non-discrete and **locally semiprimitive**.

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \leq H \mid N \text{ is closed and cocompact in } H \},$$

$$QZ(H) := \{ h \in H \mid Z_H(h) \text{ is open} \} \supseteq \bigcup \{ N \subseteq H \mid N \text{ is discrete} \}.$$

Theorem (Burger-Mozes '00, T. '18)

Let Γ be a locally finite, connected graph. Further, let $H \leq \operatorname{Aut}(\Gamma)$ be closed, non-discrete and locally semiprimitive. Then

 \bullet $H^{(\infty)}$ is minimal closed normal cocompact in H.

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \leq H \mid N \text{ is closed and cocompact in } H \},$$

$$QZ(H) := \{ h \in H \mid Z_H(h) \text{ is open} \} \supseteq \bigcup \{ N \subseteq H \mid N \text{ is discrete} \}.$$

Theorem (Burger-Mozes '00, T. '18)

Let Γ be a locally finite, connected graph. Further, let $H \leq \operatorname{Aut}(\Gamma)$ be closed, non-discrete and locally semiprimitive. Then

- $lackbox{1}{\bullet} H^{(\infty)}$ is minimal closed normal cocompact in H.

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \leq H \mid N \text{ is closed and cocompact in } H \},$$

$$QZ(H) := \{ h \in H \mid Z_H(h) \text{ is open} \} \supseteq \bigcup \{ N \subseteq H \mid N \text{ is discrete} \}.$$

Theorem (Burger-Mozes '00, T. '18)

Let Γ be a locally finite, connected graph. Further, let $H \leq \operatorname{Aut}(\Gamma)$ be closed, non-discrete and locally semiprimitive. Then

- lacksquare $H^{(\infty)}$ is minimal closed normal cocompact in H.
- **3** every **closed normal subgroup** $N \subseteq H$ is either non-discrete cocompact and $N \supseteq H^{(\infty)}$, or discrete and $N \subseteq \mathrm{QZ}(H)$.

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \leq H \mid N \text{ is closed and cocompact in } H \},$$

$$QZ(H) := \{ h \in H \mid Z_H(h) \text{ is open} \} \supseteq \bigcup \{ N \subseteq H \mid N \text{ is discrete} \}.$$

Theorem (Burger-Mozes '00, T. '18)

Let Γ be a locally finite, connected graph. Further, let $H \leq \operatorname{Aut}(\Gamma)$ be closed, non-discrete and locally semiprimitive. Then

- **1** $H^{(\infty)}$ is minimal closed normal cocompact in H.
- **3** every **closed normal subgroup** $N \subseteq H$ is either non-discrete cocompact and $N \supseteq H^{(\infty)}$, or discrete and $N \subseteq \mathrm{QZ}(H)$.
- $H^{(\infty)}/QZ(H^{(\infty)})$ admits non-trivial, minimal closed normal subgroups; finitely many, H-conjugate and topologically simple.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□
9
0

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \leq H \mid N \text{ is closed and cocompact in } H \},$$

$$QZ(H) := \{ h \in H \mid Z_H(h) \text{ is open} \} \supseteq \bigcup \{ N \subseteq H \mid N \text{ is discrete} \}.$$

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \leq H \mid N \text{ is closed and cocompact in } H \},$$

$$\mathrm{QZ}(H) := \{h \in H \mid \mathrm{Z}_H(h) \text{ is open}\} \supseteq \bigcup \{N \unlhd H \mid N \text{ is discrete}\}.$$

Theorem (Burger–Mozes '00, T. '18)

Let $H \leq \operatorname{Aut}(T_d)$ be non-discrete and $k \in \mathbb{N}$.

Let H be a totally disconnected, locally compact group. Define $H^{(\infty)} := \bigcap \{ N \unlhd H \mid N \text{ is closed and cocompact in } H \},$ $\mathrm{QZ}(H) := \{ h \in H \mid \mathrm{Z}_H(h) \text{ is open} \} \supseteq \bigcup \{ N \unlhd H \mid N \text{ is discrete} \}.$

Theorem (Burger-Mozes '00, T. '18)

Let $H \leq \operatorname{Aut}(T_d)$ be non-discrete and $k \in \mathbb{N}$. If H is locally

• transitive then QZ(H) contains no inversion.

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \unlhd H \mid N \text{ is closed and cocompact in } H \},$$

$$\mathrm{QZ}(H) := \{ h \in H \mid \mathrm{Z}_H(h) \text{ is open} \} \supseteq \bigcup \{ N \unlhd H \mid N \text{ is discrete} \}.$$

Theorem (Burger-Mozes '00, T. '18)

Let $H \leq \operatorname{Aut}(T_d)$ be non-discrete and $k \in \mathbb{N}$. If H is locally

- transitive then QZ(H) contains no inversion.
- ullet semiprimitive then $\mathrm{QZ}(H)$ contains no non-trivial arc-fixating element.

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \le H \mid N \text{ is closed and cocompact in } H \},$$

$$\mathrm{QZ}(H) := \{ h \in H \mid \mathrm{Z}_H(h) \text{ is open} \} \supseteq \bigcup \{ N \le H \mid N \text{ is discrete} \}.$$

Theorem (Burger-Mozes '00, T. '18)

Let $H \leq \operatorname{Aut}(T_d)$ be non-discrete and $k \in \mathbb{N}$. If H is locally

- transitive then QZ(H) contains no inversion.
- \bigcirc semiprimitive then $\mathrm{QZ}(H)$ contains no non-trivial arc-fixating element.
- quasiprimitive then QZ(H) contains no non-trivial elliptic element.

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \unlhd H \mid N \text{ is closed and cocompact in } H \},$$

$$\mathrm{QZ}(H) := \{ h \in H \mid \mathrm{Z}_H(h) \text{ is open} \} \supseteq \bigcup \{ N \unlhd H \mid N \text{ is discrete} \}.$$

Theorem (Burger-Mozes '00, T. '18)

Let $H \leq \operatorname{Aut}(T_d)$ be non-discrete and $k \in \mathbb{N}$. If H is locally

- transitive then QZ(H) contains no inversion.
- ullet semiprimitive then QZ(H) contains no non-trivial arc-fixating element.
- ullet quasiprimitive then QZ(H) contains no non-trivial elliptic element.
- \bullet k-transitive then QZ(H) contains no hyperbolic element of length k.

Let H be a totally disconnected, locally compact group. Define

$$H^{(\infty)} := \bigcap \{ N \unlhd H \mid N \text{ is closed and cocompact in } H \},$$

$$\mathrm{QZ}(H) := \{ h \in H \mid \mathrm{Z}_H(h) \text{ is open} \} \supseteq \bigcup \{ N \unlhd H \mid N \text{ is discrete} \}.$$

Theorem (Burger-Mozes '00, T. '18)

Let $H \leq \operatorname{Aut}(T_d)$ be non-discrete and $k \in \mathbb{N}$. If H is locally

- transitive then QZ(H) contains no inversion.
- ullet semiprimitive then $\mathrm{QZ}(H)$ contains no non-trivial arc-fixating element.
- ullet quasiprimitive then QZ(H) contains no non-trivial elliptic element.
- k-transitive then QZ(H) contains no hyperbolic element of length k.

Note: this theorem is essentially sharp.

Construction I: generalised universal groups

 T_d

Construction I: generalised universal groups

 I_d

 T_d

 $B_{d,k}$

 T_d

Construction I: generalised universal groups

$$\begin{array}{c}
g \\
colour-preserving \\
b \rightarrow x
\end{array}$$

$$\begin{array}{c}
colour-preserving \\
gx \rightarrow b
\end{array}$$

48 4 = 4 = 4 = 4 = 400

11/06/2021

Construction I: generalised universal groups

$$g$$

$$colour-preserving$$

$$b \mapsto x$$

$$\sigma_k(g,x)$$

$$b$$

$$\sigma_k(g,x)$$

 $B_{d,k}$

 T_d

ロ ト 4 同 ト 4 豆 ト 4 豆 ト 9 Q Q

 $B_{d,k}$

11/06/2021

Construction I: generalised universal groups

$$\begin{array}{c}
g \\
\hline
colour-preserving \\
b \mapsto x
\end{array}$$

$$\begin{array}{c}
colour-preserving \\
gx \mapsto b
\end{array}$$

$$\begin{array}{c}
\sigma_k(g,x) \\
\hline
\end{array}$$

Definition

 $B_{d,k}$

 T_d

For $F \leq \operatorname{Aut}(B_{d,k})$

Stephan Tornier

 $B_{d,k}$

Construction I: generalised universal groups

Definition

 $B_{d,k}$

 T_d

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$.

□▶→□▶→□▶→□▶ ◆□◆○○○

Stephan Tornier

Definition

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$.

Definition

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) | \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$.

Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$.

Definition

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) | \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$.

Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then the group $U_k(F)$ is

Definition

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$.

Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then the group $U_k(F)$ is

• closed in $Aut(T_d)$,

Definition

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$.

Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then the group $U_k(F)$ is

- closed in $Aut(T_d)$,
- vertex-transitive, and

Definition

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$.

Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then the group $U_k(F)$ is

- closed in $Aut(T_d)$,
- vertex-transitive, and
- compactly generated.

Definition

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}.$

Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then the group $U_k(F)$ is

- closed in $Aut(T_d)$,
- vertex-transitive, and
- compactly generated.

Question

For given d and k, what is the collection $\{U_k(F) \mid F \leq Aut(B_{d,k})\}$?

Definition

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) | \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$.

Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then the group $U_k(F)$ is

- closed in $Aut(T_d)$,
- vertex-transitive, and
- compactly generated.

Question

For given d and k, what is the collection $\{U_k(F) \mid F \leq \operatorname{Aut}(B_{d,k})\}$? Or: Let $F \leq \operatorname{Aut}(B_{d,k})$. What action does $U_k(F)_x$ induce on B(x,k)?

The compatibility condition (C)

Definition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then F satisfies (C) if and only if for all $x \in V(T_d)$ the actions $U_k(F)_x \curvearrowright B(x,k)$ and $F \curvearrowright B_{d,k}$ are isomorphic.

11/06/2021

The compatibility condition (C)

Definition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then F satisfies (C) if and only if for all $x \in V(T_d)$ the actions $U_k(F)_x \curvearrowright B(x,k)$ and $F \curvearrowright B_{d,k}$ are isomorphic.

The compatibility condition (C)

Definition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then F satisfies (C) if and only if for all $x \in V(T_d)$ the actions $U_k(F)_x \curvearrowright B(x,k)$ and $F \curvearrowright B_{d,k}$ are isomorphic.

University of Western Australia

The compatibility condition (C)

Definition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then F satisfies (C) if and only if for all $x \in V(T_d)$ the actions $U_k(F)_x \curvearrowright B(x,k)$ and $F \curvearrowright B_{d,k}$ are isomorphic.

Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then F satisfies (C) if and only if

The compatibility condition (C)

Definition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then F satisfies (C) if and only if for all $x \in V(T_d)$ the actions $U_k(F)_x \curvearrowright B(x,k)$ and $F \curvearrowright B_{d,k}$ are isomorphic.

Proposition

Let $F \leq \operatorname{Aut}(B_{d,k})$. Then F satisfies (C) if and only if

$$\forall i \in \{1, \dots, d\} \ \forall \ (\alpha, (\alpha_1, \dots, \alpha_{i-1}, \alpha_i, \alpha_{i+1}, \dots, \alpha_d)) \in F$$
$$\exists \ (\alpha_i, (?, \dots, ?, \alpha, ?, \dots, ?)) \in F.$$

Stephan Tornier

Joint work with Khalil Hannouch.

Joint work with Khalil Hannouch.

Create, analyse and find local actions $F \leq \operatorname{Aut}(B_{d,k})$ with condition (C).

Joint work with Khalil Hannouch.

Create, analyse and find local actions $F \leq \operatorname{Aut}(B_{d,k})$ with condition (C).

Joint work with Khalil Hannouch.

Create, analyse and find local actions of universal groups.

$$B_{3,1}$$
 $B_{3,2}$ $B_{3,3}$

11/06/2021

UGALY: a GAP package

Joint work with Khalil Hannouch.

Create, analyse and find local actions of universal groups.

Joint work with Khalil Hannouch.

Create, analyse and find local actions of universal groups.

$$B_{3,1}$$
 $B_{3,2}$
 $B_{3,3}$

github.com/torniers/UGALY

University of Western Australia

Interlude: independence properties

Definition (Banks-Elder-Willis '15)

Let $H \leq \operatorname{Aut}(T_d)$.

11/06/2021

Definition (Banks-Elder-Willis '15)

Let $H \leq \operatorname{Aut}(T_d)$. The (P_k) -closure of H is

Definition (Banks-Elder-Willis '15)

Let $H \leq \operatorname{Aut}(T_d)$. The (P_k) -closure of H is

$$H^{(\mathbf{P}_k)} := \{ g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) \ \exists h \in H : g|_{B(x,k)} = h|_{B(x,k)} \}.$$

Definition (Banks-Elder-Willis '15)

Let $H \leq \operatorname{Aut}(T_d)$. The (P_k) -closure of H is

$$H^{(P_k)} := \{ g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) \; \exists h \in H : g|_{B(x,k)} = h|_{B(x,k)} \}.$$

The group H is (P_k) -closed if $H^{(P_k)} = H$.

Definition (Banks-Elder-Willis '15)

Let $H \leq \operatorname{Aut}(T_d)$. The (P_k) -closure of H is

$$H^{(P_k)} := \{ g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) \; \exists h \in H : g|_{B(x,k)} = h|_{B(x,k)} \}.$$

The group H is (P_k) -closed if $H^{(P_k)} = H$.

Any subgroup $H \leq \operatorname{Aut}(T_d)$ is approximated by its (P_k) -closures:

Definition (Banks-Elder-Willis '15)

Let $H \leq \operatorname{Aut}(T_d)$. The (P_k) -closure of H is

$$H^{(P_k)} := \{ g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) \; \exists h \in H : g|_{B(x,k)} = h|_{B(x,k)} \}.$$

The group H is (P_k) -closed if $H^{(P_k)} = H$.

Any subgroup $H \leq Aut(T_d)$ is approximated by its (P_k) -closures:

$$H^{(\mathrm{P}_1)} \geq H^{(\mathrm{P}_2)} \geq \cdots \geq H^{(\mathrm{P}_k)} \geq \cdots \geq \overline{H} \geq H \quad \text{and} \quad \bigcap_{k \in \mathbb{N}} H^{(\mathrm{P}_k)} = \overline{H}.$$

Definition (Banks-Elder-Willis '15)

Let $H \leq \operatorname{Aut}(T_d)$. The (P_k) -closure of H is

$$H^{(\mathbf{P}_k)} := \{ g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) \ \exists h \in H : g|_{B(x,k)} = h|_{B(x,k)} \}.$$

The group H is (P_k) -closed if $H^{(P_k)} = H$.

Any subgroup $H \leq Aut(T_d)$ is approximated by its (P_k) -closures:

$$H^{(\mathrm{P}_1)} \geq H^{(\mathrm{P}_2)} \geq \cdots \geq H^{(\mathrm{P}_k)} \geq \cdots \geq \overline{H} \geq H \quad \text{and} \quad \bigcap_{k \in \mathbb{N}} H^{(\mathrm{P}_k)} = \overline{H}.$$

Theorem (T. '18)

$$\left\{ H \leq \operatorname{Aut}(T_d) \middle| \begin{array}{l} \textit{locally transitive} \\ \textit{inversion of order 2} \\ \textit{Property } (P_k) \end{array} \right\} \stackrel{1:1}{\longleftrightarrow} \left\{ F \leq \operatorname{Aut}(B_{d,k}) \middle| \begin{array}{l} \textit{locally transitive} \\ \textit{Condition } (C) \end{array} \right\}$$

Stephan Tornier

Theorem (Reid-Smith '20)

Theorem (Reid-Smith '20)

$$\{(P_1)\text{-closed groups}\}/\sim_{\mathit{conj}} \stackrel{1:1}{\longleftrightarrow} \{\mathit{local action diagrams}\}/\sim_{\mathit{iso}}$$

11/06/2021

Construction II: (P_1) -closed groups

Theorem (Reid-Smith '20)

 $\{(P_1) ext{-closed groups}\}/\sim_{\mathit{conj}} \stackrel{1:1}{\longleftrightarrow} \{\mathit{local action diagrams}}/\sim_{\mathit{iso}}$

Definition (Reid-Smith '20)

A local action diagram is a triple $\Delta = (\Gamma, (X_a)_a, (G(v))_v)$ consisting of

Theorem (Reid-Smith '20)

 $\{(P_1) ext{-closed groups}\}/\sim_{\mathit{conj}} \stackrel{1:1}{\longleftrightarrow} \{\mathit{local action diagrams}}/\sim_{\mathit{iso}}$

Definition (Reid-Smith '20)

A local action diagram is a triple $\Delta = (\Gamma, (X_a)_a, (G(v))_v)$ consisting of • a connected graph $\Gamma = (V, A, o, t, r)$,

Theorem (Reid-Smith '20)

 $\{(P_1) ext{-closed groups}\}/\sim_{\mathit{conj}} \stackrel{1:1}{\longleftrightarrow} \{\mathit{local action diagrams}}/\sim_{\mathit{iso}}$

Definition (Reid-Smith '20)

A local action diagram is a triple $\Delta = (\Gamma, (X_a)_a, (G(v))_v)$ consisting of

- a connected graph $\Gamma = (V, A, o, t, r)$,
- a set X_a for every arc $a \in A$, and for every $v \in V$

Theorem (Reid-Smith '20)

 $\{(P_1)\text{-closed groups}\}/\sim_{conj} \stackrel{1:1}{\longleftrightarrow} \{\textit{local action diagrams}\}/\sim_{\textit{iso}}$

Definition (Reid-Smith '20)

A local action diagram is a triple $\Delta = (\Gamma, (X_a)_a, (G(v))_v)$ consisting of

- a connected graph $\Gamma = (V, A, o, t, r)$,
- a set X_a for every arc $a \in A$, and for every $v \in V$
- a group $G(v) \leq \operatorname{Sym}(X_v)$, where $X_v = \bigsqcup_{a \in o^{-1}(v)} X_a$, with orbits X_a .

The Groups and Combinatorics Seminar

{2}

Example: vertex-transitive, (P_1) -closed $G \leq \operatorname{Aut}(T_3)$ {2}

The Groups and Combinatorics Seminar

 $U_1(S_3)$

Towards a classification of closed vertex-transitive groups

