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Let H be a totally disconnected, locally compact group.
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From local to global structure

Let H be a totally disconnected, locally compact group. Define
H(>) .= m{N <O H | N is closed and cocompact in H},
QZ(H) :={h € H | Zn(h) is open} 2 | {N < H | N is discrete}.
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Let H be a totally disconnected, locally compact group. Define
H(>) .= m{N <O H | N is closed and cocompact in H},
QZ(H) :={h € H | Zn(h) is open} 2 | {N < H | N is discrete}.
Theorem (Burger-Mozes '00, T. '18)

Let I be a locally finite, connected graph.

Stephan Tornier Groups acting on trees 3



The Groups and Combinatorics Seminar University of Western Australia

11/06/2021

From local to global structure
Let H be a totally disconnected, locally compact group. Define
H(>) .= ﬂ{N <O H | N is closed and cocompact in H},

QZ(H) :={h € H | Zn(h) is open} 2 | {N < H | N is discrete}.
Theorem (Burger-Mozes '00, T. '18)

Let T be a locally finite, connected graph. Further, let H < Aut(I') be
closed, non-discrete and locally semiprimitive.

Stephan Tornier Groups acting on trees



The Groups and Combinatorics Seminar University of Western Australia

11/06/2021

From local to global structure
Let H be a totally disconnected, locally compact group. Define
H(>) .= ﬂ{N <O H | N is closed and cocompact in H},
QZ(H) :={h € H | Zn(h) is open} 2 | {N < H | N is discrete}.
Theorem (Burger-Mozes '00, T. '18)

Let T be a locally finite, connected graph. Further, let H < Aut(I') be
closed, non-discrete and locally semiprimitive. Then

@ H() s minimal closed normal cocompact in H.

Stephan Tornier Groups acting on trees



The Groups and Combinatorics Seminar University of Western Australia

11/06/2021

From local to global structure
Let H be a totally disconnected, locally compact group. Define
H(>) .= ﬂ{N <O H | N is closed and cocompact in H},
QZ(H) :={h € H | Zn(h) is open} 2 | {N < H | N is discrete}.
Theorem (Burger-Mozes '00, T. '18)

Let T be a locally finite, connected graph. Further, let H < Aut(I') be
closed, non-discrete and locally semiprimitive. Then
@ H() s minimal closed normal cocompact in H.

Q@ QZ(H) is maximal discrete normal, and non-cocompact in H.

Stephan Tornier Groups acting on trees



The Groups and Combinatorics Seminar University of Western Australia

11/06/2021
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Let H be a totally disconnected, locally compact group. Define
H(>) .= ﬂ{N <O H | N is closed and cocompact in H},

QZ(H) :={h € H | Zn(h) is open} 2 | {N < H | N is discrete}.
Theorem (Burger-Mozes '00, T. '18)
Let T be a locally finite, connected graph. Further, let H < Aut(I') be
closed, non-discrete and locally semiprimitive. Then

@ H() s minimal closed normal cocompact in H.

Q@ QZ(H) is maximal discrete normal, and non-cocompact in H.

© every closed normal subgroup N < H is either non-discrete
cocompact and N > H(*), or discrete and N < QZ(H).

Stephan Tornier Groups acting on trees



The Groups and Combinatorics Seminar University of Western Australia 11/06/2021

From local to global structure

Let H be a totally disconnected, locally compact group. Define
H(>) .= ﬂ{N <O H | N is closed and cocompact in H},
QZ(H) :={h € H | Zn(h) is open} 2 | {N < H | N is discrete}.
Theorem (Burger-Mozes '00, T. '18)
Let T be a locally finite, connected graph. Further, let H < Aut(I') be
closed, non-discrete and locally semiprimitive. Then
@ H() s minimal closed normal cocompact in H.

Q@ QZ(H) is maximal discrete normal, and non-cocompact in H.

© every closed normal subgroup N < H is either non-discrete
cocompact and N > H(*), or discrete and N < QZ(H).

Q@ H()/QZ(H(*)) admits non-trivial, minimal closed normal
subgroups; finitely many, H-conjugate and topologically simple.

Stephan Tornier Groups acting on trees 3



The Groups and Combinatorics Seminar University of Western Australia 11/06/2021

From local to global structure

Let H be a totally disconnected, locally compact group. Define
H(>) .= ﬂ{N <O H | N is closed and cocompact in H},
QZ(H) :={h € H | Zn(h) is open} D | {N < H | N is discrete}.

Stephan Tornier Groups acting on trees 4



The Groups and Combinatorics Seminar University of Western Australia 11/06/2021

From local to global structure

Let H be a totally disconnected, locally compact group. Define
H(>) .= ﬂ{N <O H | N is closed and cocompact in H},
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From local to global structure

Let H be a totally disconnected, locally compact group. Define
H(>) .= ﬂ{N <O H | N is closed and cocompact in H},
QZ(H) :={h € H | Zn(h) is open} D | {N < H | N is discrete}.

Theorem (Burger-Mozes '00, T. '18)
Let H < Aut(Ty) be non-discrete and k € N. If H is locally

Q transitive then QZ(H) contains no inversion.
@ semiprimitive then QZ(H) contains no non-trivial arc-fixating element.
© quasiprimitive then QZ(H) contains no non-trivial elliptic element.

© k-transitive then QZ(H) contains no hyperbolic element of length k.

Note: this theorem is essentially sharp.
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Construction |: generalised universal groups

colour-pfeserving colour-pfeserving
b x gx4> b

)
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Construction |: generalised universal groups

Tq Ty

) )
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Construction |: generalised universal groups

T,
.'/
Ty i Ty
colour-pfeserving
b X gx4> b
b Uk(g, X) b
e N > .

Bd,k [/ r Bd,k

Definition

For F< Aut(BdJ()
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Construction |: generalised universal groups

J

x g :
)/I." '/I i

Td 1 1 1 1 Td
colour-pfeserving
gx4> b
b Uk(g, X) , b
Bd,k [/ ( Bd,k
Definition

For F <Aut(Bg), set Ux(F):={gcAut(Ty)|Vxe V(Ty): ok(g,x)€F}.
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Properties & questions

Definition
For F <Aut(Byk), set Ux(F):={gcAut(Ty)|Vxe V(Tq): ok(g,x)€F}.
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Definition
For F <Aut(Byk), set Ux(F):={gcAut(Ty)|Vxe V(Tq): ok(g,x)€F}.
Proposition

Let F < Aut(dek).
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Definition
For F <Aut(Byx), set Ux(F):={gcAut(Ty)|Vxe V(Tq): ok(g,x)€F}
Proposition

Let F < Aut(Bgk). Then the group Ux(F) is
Q closed in Aut(Ty),
@ vertex-transitive, and

© compactly generated.

Question

For given d and k, what is the collection {Uy(F) | F < Aut(By)}?
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Properties & questions
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Definition
For F <Aut(Byk), set Ux(F):={gcAut(Ty)|Vxe V(Tq): ok(g,x)€F}.
Proposition

Let F < Aut(Bgk). Then the group Ux(F) is
Q closed in Aut(Ty),
@ vertex-transitive, and

© compactly generated.

Question

For given d and k, what is the collection {Uy(F) | F < Aut(By)}?
Or: Let F < Aut(Bg,k). What action does U(F)x induce on B(x, k)?
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The compatibility condition (C)
Definition

Let F <Aut(Bg). Then F satisfies (C) if and only if for all xe V/(Ty)
the actions Uy(F)x ~ B(x, k) and F ~ By are isomorphic.
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The compatibility condition (C)

Definition
Let F <Aut(Bg). Then F satisfies (C) if and only if for all xe V/(Ty)
the actions Uy (F)x ~ B(x, k) and F ~ By are isomorphic.

d
Aut(Bd’k) S Aut(BdJ(_l) X HAUt(Bd,k—l)
i=1
g (Uk—l(ga b)7 ((kal(g~ b1)7 s 7Uk—1(g7 bd))

Stephan Tornier Groups acting on trees 7



The Groups and Combinatorics Seminar

University of Western Australia 11/06/2021

The compatibility condition (C)
Definition

Let F <Aut(Bg). Then F satisfies (C) if and only if for all xe V/(Ty)
the actions Uy (F)x ~ B(x, k) and F ~ By are isomorphic.

d
Aut(Bd’k) g Aut(BdJ(_l) X HAUt(Bd,k—l)

i=1

( g — (ak_l(g, b),(ﬁkfl(g. bl),...,ak_l(g, bd))

Proposition

Let F <Aut(Bg). Then F satisfies (C) if and only if
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The compatibility condition (C)
Definition

Let F <Aut(Bg). Then F satisfies (C) if and only if for all xe V/(Ty)
the actions Uy (F)x ~ B(x, k) and F ~ By are isomorphic.

d
Aut(Bd’k) g Aut(BdJ(_l) X HAUt(Bd,k—l)

i=1

( g — (ak_l(g, b),(ﬁkfl(g. bl),...,ak_l(g, bd))

Proposition

Let F <Aut(Bg). Then F satisfies (C) if and only if

ViE{1,...,d}V(a,(al,...,a;,l,a,-,a,url,...,ad))6F
I (i (2., ? ,a, ? 7)) €F.

g ey
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UGALY: a GAP package

Joint work with Khalil Hannouch.
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UGALY: a GAP package

Joint work with Khalil Hannouch.

Create, analyse and find local actions of universal groups.

B3

github.com /torniers/UGALY
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Definition (Banks—Elder-Willis '15)
Let H < Aut(T).
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Definition (Banks—Elder-Willis '15)
Let H < Aut(Ty). The (Pg)-closure of H is

H®W .= {g € Aut(Ty) | Vx € V(Ty) 3h € H: glapok) = et

The group H is (Py)-closed if HPK) = H.
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Interlude: independence properties
Definition (Banks—Elder-Willis '15)
Let H < Aut(Ty). The (Pg)-closure of H is
HPW .= {g € Aut(Ty) | Vx € V(Ty) 3h€ H: glppiy = hlapon -
The group H is (Py)-closed if HPK) = H.

Any subgroup H < Aut(Ty) is approximated by its (P )-closures:

HPD > @) > o> P > ... > H>H and mk NH(Pk):H'
€
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Interlude: independence properties
Definition (Banks—Elder-Willis '15)
Let H < Aut(Ty). The (Pg)-closure of H is
HPW .= {g € Aut(Ty) | Vx € V(Ty) 3h€ H: glppiy = hlapon -
The group H is (Py)-closed if HPK) = H.
Any subgroup H < Aut(Ty) is approximated by its (P )-closures:
HPD) > pP2) > o> P > .. > H>H  and ﬂ H®PD = H.
keN
Theorem (T. '18)

locally transitive .
H < Aut(Ty)|inversion of order 2 &){F <Aut(Bg k)
Property (Py)

locally transitive
Condition (C)
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Construction II: (P;)-closed groups
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Theorem (Reid-Smith '20)
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Construction II: (P;)-closed groups

Theorem (Reid-Smith '20)

{(Pl)—C/OSGd groups}/ ~conj <1—1> {/Oca/ action diagrams}/ ~iso
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Construction II: (P;)-closed groups

Theorem (Reid-Smith '20)
{(P1)-closed groups}/ ~conj AL {local action diagrams}/ ~is,
Definition (Reid-Smith '20)

A local action diagram is a triple A = (T, (X3)a, (G(v)),) consisting of
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Definition (Reid-Smith '20)

A local action diagram is a triple A = (T, (X3)a, (G(v)),) consisting of
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Construction II: (P;)-closed groups

Theorem (Reid-Smith '20)
{(P1)-closed groups}/ ~ conj AL {local action diagrams}/ ~;s

Definition (Reid-Smith '20)

A local action diagram is a triple A = (T, (X3)a, (G(v)),) consisting of
@ a connected graph ' = (V, A, o,t,r),
@ a set X, for every arc a € A, and for every v € V

@ a group G(v) < Sym(Xy), where X, = [ |,c,-1(,) Xa, with orbits X.

Stephan Tornier Groups acting on trees
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Example: vertex-transitive, (P;)-closed G < Aut(T3)
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Example: vertex-transitive, (P;)-closed G < Aut(T3)
{2} {2}

/)
8y — | {1 {3 {1}
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Example: vertex-transitive, (P;)-closed G < Aut(T3)
{2} {2}

() Q ( ) Q “ )

<(1 2))

Z*C2
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Example: vertex-transitive, (P;)-closed G < Aut(T3)
{2} {2}

g ) {12}

(1 2))
U1 ({id}) Z % c2 U1(S2)
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Example: vertex-transitive, (P;)-closed G < Aut(T3)
{2} {2}

1‘//*\‘; ; ; {1 2}

(id) (1 2))
Ui({id}) Z * C2 U1(S2)
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Example: vertex-transitive, (P;)-closed G < Aut(T3)
{2} {2}

1‘//*\‘; ; ; {1 2}

(id) (1 2))
Ui({id}) Z * C2 U1(S2)

((1,2))
Aut(T3).
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Example: vertex-transitive, (P;)-closed G < Aut(T3)

{2} {2}
( ) {1 2}
(id) (1 2))
Uy ({id}) Z < C2 U1(S2)
{1,2,3}
{3} :{1,2} Q
((1,2)) Az
Aut(Tg,)w U1(A3)

U1(S3)
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Towards a classification of closed vertex-transitive groups

(Py) U ({id}) = Z*Cy ™ Uy (Cy) Aut(T3 Uy ( U,y (S

I\ I\ I\ I\ l\
I\ Y I\ I\ I\
/A /A /A /A I\

ends ——— closed, vertex-transitive H = (,cy HE® < Aut(T3)

Stephan Tornier Groups acting on trees 12



