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From local to global structure

Let H be a totally disconnected, locally compact group. Define

H(∞) :=
⋂
{N ⊴ H | N is closed and cocompact in H},

QZ(H) := {h ∈ H | ZH(h) is open} ⊇
⋃
{N ⊴ H | N is discrete}.

Theorem (Burger–Mozes ’00, T. ’18)

Let Γ be a locally finite, connected graph. Further, let H ≤ Aut(Γ) be
closed, non-discrete and locally semiprimitive. Then

1 H(∞) is minimal closed normal cocompact in H.

2 QZ(H) is maximal discrete normal, and non-cocompact in H.

3 every closed normal subgroup N ⊴ H is either non-discrete
cocompact and N ⊵ H(∞), or discrete and N ⊴QZ(H).

4 H(∞)/QZ(H(∞)) admits non-trivial, minimal closed normal
subgroups; finitely many, H-conjugate and topologically simple.
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Let H ≤ Aut(Td) be non-discrete and k ∈ N. If H is locally

1 transitive then QZ(H) contains no inversion.

2 semiprimitive then QZ(H) contains no non-trivial arc-fixating element.

3 quasiprimitive then QZ(H) contains no non-trivial elliptic element.

4 k-transitive then QZ(H) contains no hyperbolic element of length k.

Note: this theorem is essentially sharp.
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Construction I: generalised universal groups

Td

x g gx

Td

colour-preserving
b 7→ x

colour-preserving
gx 7→ b

Bd ,k

b σk(g , x) b

Bd ,k

Definition

For F ≤Aut(Bd ,k), set Uk(F ) :={g ∈Aut(Td) |∀x ∈V (Td) : σk(g , x)∈F}.
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Properties & questions

Definition

For F ≤Aut(Bd ,k), set Uk(F ) :={g ∈Aut(Td) |∀x ∈V (Td) : σk(g , x)∈F}.

Proposition

Let F ≤ Aut(Bd ,k). Then the group Uk(F ) is

1 closed in Aut(Td),

2 vertex-transitive, and

3 compactly generated.

Question

For given d and k , what is the collection {Uk(F ) | F ≤ Aut(Bd ,k)}?
Or: Let F ≤ Aut(Bd ,k). What action does Uk(F )x induce on B(x , k)?
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The compatibility condition (C)

Definition

Let F ≤Aut(Bd ,k). Then F satisfies (C) if and only if for all x ∈V (Td)
the actions Uk(F )x ↷ B(x , k) and F ↷ Bd ,k are isomorphic.

Aut(Bd ,k) ≲ Aut(Bd ,k−1)⋉
d∏

i=1

Aut(Bd ,k−1)

g 7→ (σk−1(g , b), (σk−1(g , b1), . . . ,σk−1(g , bd))

Proposition

Let F ≤Aut(Bd ,k). Then F satisfies (C) if and only if

∀i ∈ {1, . . . , d} ∀ (α, (α1, . . . , αi−1, αi , αi+1, . . . , αd)) ∈ F

∃ (αi , ( ?, . . . , ? , α, ? , . . . , ? )) ∈ F .

Stephan Tornier Groups acting on trees 7
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UGALY: a GAP package

Joint work with Khalil Hannouch.

Create, analyse and find local actions F ≤ Aut(Bd ,k) with condition (C).

B3,1 B3,2 B3,3
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Interlude: independence properties

Definition (Banks–Elder–Willis ’15)

Let H ≤ Aut(Td). The (Pk)-closure of H is

H(Pk ) := {g ∈ Aut(Td) | ∀x ∈ V (Td) ∃h ∈ H : g |B(x ,k) = h|B(x ,k)}.

The group H is (Pk)-closed if H(Pk ) = H.

Any subgroup H ≤ Aut(Td) is approximated by its (Pk)-closures:

H(P1) ≥ H(P2) ≥ · · · ≥ H(Pk ) ≥ · · · ≥ H ≥ H and
⋂

k∈N
H(Pk ) = H.

Theorem (T. ’18)H≤Aut(Td)

∣∣∣∣∣∣
locally transitive

inversion of order 2
Property (Pk)

 1:1←→
{
F ≤Aut(Bd ,k)

∣∣∣∣locally transitive
Condition (C)

}
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Construction II: (P1)-closed groups

U1(F )Uk(F )
(P1)-closed
groups

Theorem (Reid-Smith ’20)

{(P1)-closed groups}/ ∼conj
1:1←→ {local action diagrams}/ ∼iso

Definition (Reid-Smith ’20)

A local action diagram is a triple ∆ = (Γ, (Xa)a, (G (v))v ) consisting of

a connected graph Γ = (V ,A, o, t, r),

a set Xa for every arc a ∈ A, and for every v ∈ V

a group G (v) ≤ Sym(Xv ), where Xv =
⊔

a∈o−1(v) Xa, with orbits Xa.
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Example: vertex-transitive, (P1)-closed G ≤ Aut(T3)
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〈id〉
U1({id})
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〈id〉
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b

〈(1, 2)〉
U1(S2)
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Aut(T3)ω
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b b
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Towards a classification of closed vertex-transitive groups
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