A permutation group problem relating to groups acting on trees Stephan Tornier November 30, 2021 Problem #### **Problem** Let Ω be a finite set and let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. #### **Problem** Let Ω be a finite set and let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Then G acts on $K_G := \prod_{\omega \in \Omega} G_{\omega}$ as follows: $g \cdot (g_{\omega})_{\omega} := (gg_{g^{-1}\omega}g^{-1})_{\omega}$. #### **Problem** Let Ω be a finite set and let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Then G acts on $K_G := \prod_{\omega \in \Omega} G_{\omega}$ as follows: $g \cdot (g_{\omega})_{\omega} := (gg_{g^{-1}\omega}g^{-1})_{\omega}$. What are all the G-invariant subgroups of K_G ? #### **Problem** Let Ω be a finite set and let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Then G acts on $K_G := \prod_{\omega \in \Omega} G_{\omega}$ as follows: $g \cdot (g_{\omega})_{\omega} := (gg_{g^{-1}\omega}g^{-1})_{\omega}$. What are all the G-invariant subgroups of K_G ? #### **Problem** Let Ω be a finite set and let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Then G acts on $K_G := \prod_{\omega \in \Omega} G_\omega$ as follows: $g \cdot (g_\omega)_\omega := (gg_{g^{-1}\omega}g^{-1})_\omega$. What are all the G-invariant subgroups of K_G ? T_d # Generalised universal groups $$\frac{g}{gx}$$ T_d T_d $B_{d,k}$ gx colour-preserving # Generalised universal groups T_d $$\begin{array}{c} g \\ \downarrow \\ colour-preserving \\ b \mapsto x \end{array}$$ $$\begin{array}{c} colour-preserving \\ gx \mapsto b \end{array}$$ $$\begin{array}{c} colour-preserving \\ gx \mapsto b \end{array}$$ $B_{d,k}$ T_d (ロ > 《圈 > 《돌 > 《돌 > · 돌 · 》 약 이 Q @ $B_{d,k}$ $$\begin{array}{c} g \\ \text{colour-preserving} \\ b \mapsto x \\ \text{b} \\ \hline \\ \sigma_k(g,x) \\ \text{b} \end{array}$$ #### **Definition** $B_{d,k}$ T_d For $F \leq \operatorname{Aut}(B_{d,k})$ $B_{d,k}$ #### **Definition** $B_{d,k}$ T_d For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$. #### **Definition** For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$. #### Definition For $$F \leq \operatorname{Aut}(B_{d,k})$$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$. # Theorem (T. '18) $$\left\{ H \leq \operatorname{Aut}(T_d) \middle| \begin{array}{l} \textit{locally transitive} \\ \textit{inversion of order 2} \\ \textit{(P_k)-closed} \end{array} \right\} \stackrel{1:1}{\longleftrightarrow} \left\{ F \leq \operatorname{Aut}(B_{d,k}) \middle| \begin{array}{l} \textit{locally transitive} \\ \textit{Condition (C)} \end{array} \right\}$$ #### **Definition** For $$F \leq \operatorname{Aut}(B_{d,k})$$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$. ## Theorem (T. '18) $$\left\{ H \le \operatorname{Aut}(T_d) \middle| \begin{array}{l} \text{locally transitive} \\ \text{inversion of order 2} \\ (P_k)\text{-closed} \end{array} \right\} \xleftarrow{1:1} \left\{ F \le \operatorname{Aut}(B_{d,k}) \middle| \begin{array}{l} \text{locally transitive} \\ \text{Condition (C)} \end{array} \right\}$$ #### Proposition Let $G \leq \operatorname{Sym}(\Omega)$. #### **Definition** For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$. ## Theorem (T. '18) $$\left\{ H \leq \operatorname{Aut}(T_d) \middle| \begin{array}{l} \textit{locally transitive} \\ \textit{inversion of order 2} \\ \textit{(P_k)-closed} \end{array} \right\} \xleftarrow{1:1} \left\{ F \leq \operatorname{Aut}(B_{d,k}) \middle| \begin{array}{l} \textit{locally transitive} \\ \textit{Condition (C)} \end{array} \right\}$$ #### Proposition Let $G \leq \operatorname{Sym}(\Omega)$. Every G-invariant subgroup $K \leq K_G$ #### Definition For $$F \leq \operatorname{Aut}(B_{d,k})$$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$. ### Theorem (T. '18) $$\left\{ H \le \operatorname{Aut}(T_d) \middle| \begin{array}{l} \text{locally transitive} \\ \text{inversion of order 2} \\ (P_k)\text{-closed} \end{array} \right\} \xleftarrow{1:1} \left\{ F \le \operatorname{Aut}(B_{d,k}) \middle| \begin{array}{l} \text{locally transitive} \\ \text{Condition (C)} \end{array} \right\}$$ #### Proposition Let $G \leq \operatorname{Sym}(\Omega)$. Every G-invariant subgroup $K \leq K_G$ gives rise to a group $\Sigma(K) \leq \operatorname{Aut}(B_{d,2})$ #### Definition For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$. ## Theorem (T. '18) $$\left\{ H \leq \operatorname{Aut}(T_d) \middle| \begin{array}{l} \textit{locally transitive} \\ \textit{inversion of order 2} \\ \textit{(P_k)-closed} \end{array} \right\} \xleftarrow{1:1} \left\{ F \leq \operatorname{Aut}(B_{d,k}) \middle| \begin{array}{l} \textit{locally transitive} \\ \textit{Condition (C)} \end{array} \right\}$$ #### Proposition Let $G \leq \operatorname{Sym}(\Omega)$. Every G-invariant subgroup $K \leq K_G$ gives rise to a group $\Sigma(K) \leq \operatorname{Aut}(B_{d,2})$ which satisfies Condition (C) #### Definition For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$. ## Theorem (T. '18) $$\left\{ H \leq \operatorname{Aut}(T_d) \middle| \begin{array}{l} \textit{locally transitive} \\ \textit{inversion of order 2} \\ \textit{(P_k)-closed} \end{array} \right\} \stackrel{\text{1:1}}{\longleftrightarrow} \left\{ F \leq \operatorname{Aut}(B_{d,k}) \middle| \begin{array}{l} \textit{locally transitive} \\ \textit{Condition (C)} \end{array} \right\}$$ #### Proposition Let $G \leq \operatorname{Sym}(\Omega)$. Every G-invariant subgroup $K \leq K_G$ gives rise to a group $\Sigma(K) \leq \operatorname{Aut}(B_{d,2})$ which satisfies Condition (C) and $\ker \pi|_{\Sigma(K)} = K$. #### **Definition** For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) | \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$. ## Theorem (T. '18) $$\left\{ H \leq \operatorname{Aut}(T_d) \middle| \begin{array}{l} \textit{locally transitive} \\ \textit{inversion of order 2} \\ \textit{(P_k)-closed} \end{array} \right\} \xleftarrow{1:1} \left\{ F \leq \operatorname{Aut}(B_{d,k}) \middle| \begin{array}{l} \textit{locally transitive} \\ \textit{Condition (C)} \end{array} \right\}$$ #### Proposition Let $G \leq \operatorname{Sym}(\Omega)$. Every G-invariant subgroup $K \leq K_G$ gives rise to a group $\Sigma(K) \leq \operatorname{Aut}(B_{d,2})$ which satisfies Condition (C) and $\ker \pi|_{\Sigma(K)} = K$. #### **Problem** Let Ω be a finite set and let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Then G acts on $K_G := \prod_{\omega \in \Omega} G_{\omega}$ as follows: $g \cdot (g_{\omega})_{\omega} := (gg_{g^{-1}\omega}g^{-1})_{\omega}$. What are all the G-invariant subgroups of K_G ? #### **Problem** Let Ω be a finite set and let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Then G acts on $K_G := \prod_{\omega \in \Omega} G_{\omega}$ as follows: $g \cdot (g_{\omega})_{\omega} := (gg_{g^{-1}\omega}g^{-1})_{\omega}$. What are all the G-invariant subgroups of K_G ? Clearly, the trivial subgroup of K_G as well as K_G itself are G-invariant. #### **Problem** Let Ω be a finite set and let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Then G acts on $K_G := \prod_{\omega \in \Omega} G_{\omega}$ as follows: $g \cdot (g_{\omega})_{\omega} := (gg_{g^{-1}\omega}g^{-1})_{\omega}$. What are all the G-invariant subgroups of K_G ? Clearly, the trivial subgroup of K_G as well as K_G itself are G-invariant. - $\bullet \ \Gamma := \{e\} \leq K_G,$ - \bullet $\Phi := K_G$. #### **Problem** Let Ω be a finite set and let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Then G acts on $K_G := \prod_{\omega \in \Omega} G_{\omega}$ as follows: $g \cdot (g_{\omega})_{\omega} := (gg_{g^{-1}\omega}g^{-1})_{\omega}$. What are all the G-invariant subgroups of K_G ? Clearly, the trivial subgroup of K_G as well as K_G itself are G-invariant. - $\Gamma := \{e\} \le K_G$, - \bullet $\Phi := K_G$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigsqcup_{i \in I} \Omega_i$. #### **Problem** Let Ω be a finite set and let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Then G acts on $K_G := \prod_{\omega \in \Omega} G_{\omega}$ as follows: $g \cdot (g_{\omega})_{\omega} := (gg_{g^{-1}\omega}g^{-1})_{\omega}$. What are all the G-invariant subgroups of K_G ? Clearly, the trivial subgroup of K_G as well as K_G itself are G-invariant. - $\Gamma := \{e\} \leq K_G,$ - \bullet $\Phi := K_G$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigsqcup_{i \in I} \Omega_i$. Let $p: \Omega \to I$ be such that $\omega \in \Omega_{p(\omega)}$ for all $\omega \in \Omega$. #### **Problem** Let Ω be a finite set and let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Then G acts on $K_G := \prod_{\omega \in \Omega} G_{\omega}$ as follows: $g \cdot (g_{\omega})_{\omega} := (gg_{g^{-1}\omega}g^{-1})_{\omega}$. What are all the G-invariant subgroups of K_G ? Clearly, the trivial subgroup of K_G as well as K_G itself are G-invariant. - $\Gamma := \{e\} \leq K_G,$ - \bullet $\Phi := K_G$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigsqcup_{i \in I} \Omega_i$. Let $p: \Omega \to I$ be such that $\omega \in \Omega_{p(\omega)}$ for all $\omega \in \Omega$. Set #### **Problem** Let Ω be a finite set and let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Then G acts on $K_G := \prod_{\omega \in \Omega} G_{\omega}$ as follows: $g \cdot (g_{\omega})_{\omega} := (gg_{g^{-1}\omega}g^{-1})_{\omega}$. What are all the G-invariant subgroups of K_G ? Clearly, the trivial subgroup of K_G as well as K_G itself are G-invariant. - $\Gamma := \{e\} \le K_G$, - \bullet $\Phi := K_G$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigsqcup_{i \in I} \Omega_i$. Let $p: \Omega \to I$ be such that $\omega \in \Omega_{p(\omega)}$ for all $\omega \in \Omega$. Set • $$\Phi_{\mathcal{P}} := \{ (s_{\omega})_{\omega} \in K_G \mid \forall \omega, \omega' \in \Omega : p(\omega) = p(\omega') \Rightarrow s_{\omega} = s_{\omega'} \} \cong \prod_{i \in I} G_{\Omega_i}$$ #### **Problem** Let Ω be a finite set and let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Then G acts on $K_G := \prod_{\omega \in \Omega} G_{\omega}$ as follows: $g \cdot (g_{\omega})_{\omega} := (gg_{g^{-1}\omega}g^{-1})_{\omega}$. What are all the G-invariant subgroups of K_G ? Clearly, the trivial subgroup of K_G as well as K_G itself are G-invariant. - $\Gamma := \{e\} \le K_G$, - \bullet $\Phi := K_G$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigsqcup_{i \in I} \Omega_i$. Let $p: \Omega \to I$ be such that $\omega \in \Omega_{p(\omega)}$ for all $\omega \in \Omega$. Set • $$\Phi_{\mathcal{P}} := \{ (s_{\omega})_{\omega} \in K_G \mid \forall \omega, \omega' \in \Omega : p(\omega) = p(\omega') \Rightarrow s_{\omega} = s_{\omega'} \} \cong \prod_{i \in I} G_{\Omega_i}$$ When G is transitive and the G_{ω} are not simple, let $N \subseteq G_{\omega_0}$. #### Problem Let Ω be a finite set and let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Then G acts on $K_G := \prod_{\omega \in \Omega} G_{\omega}$ as follows: $g \cdot (g_{\omega})_{\omega} := (gg_{g^{-1}\omega}g^{-1})_{\omega}$. What are all the G-invariant subgroups of K_G ? Clearly, the trivial subgroup of K_G as well as K_G itself are G-invariant. - $\Gamma := \{e\} \le K_G$, - \bullet $\Phi := K_G$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigsqcup_{i \in I} \Omega_i$. Let $p: \Omega \to I$ be such that $\omega \in \Omega_{p(\omega)}$ for all $\omega \in \Omega$. Set • $$\Phi_{\mathcal{P}} := \{ (s_{\omega})_{\omega} \in K_G \mid \forall \omega, \omega' \in \Omega : p(\omega) = p(\omega') \Rightarrow s_{\omega} = s_{\omega'} \} \cong \prod_{i \in I} G_{\Omega_i}$$ When G is transitive and the G_{ω} are not simple, let $N \subseteq G_{\omega_0}$. Also, let $f: \Omega \to G$, $f \mapsto f_{\omega}$ be a map #### **Problem** Let Ω be a finite set and let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Then G acts on $K_G := \prod_{\omega \in \Omega} G_{\omega}$ as follows: $g \cdot (g_{\omega})_{\omega} := (gg_{g^{-1}\omega}g^{-1})_{\omega}$. What are all the G-invariant subgroups of K_G ? Clearly, the trivial subgroup of K_G as well as K_G itself are G-invariant. - $\Gamma := \{e\} \leq K_G,$ - \bullet $\Phi := K_G$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigsqcup_{i \in I} \Omega_i$. Let $p: \Omega \to I$ be such that $\omega \in \Omega_{p(\omega)}$ for all $\omega \in \Omega$. Set • $$\Phi_{\mathcal{P}} := \{ (s_{\omega})_{\omega} \in K_G \mid \forall \omega, \omega' \in \Omega : p(\omega) = p(\omega') \Rightarrow s_{\omega} = s_{\omega'} \} \cong \prod_{i \in I} G_{\Omega_i}$$ When G is transitive and the G_{ω} are not simple, let $N \subseteq G_{\omega_0}$. Also, let $f: \Omega \to G$, $f \mapsto f_{\omega}$ be a map such that $f_{\omega}(\omega_0) = \omega$ for all $\omega \in \Omega$. #### **Problem** Let Ω be a finite set and let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Then G acts on $K_G := \prod_{\omega \in \Omega} G_{\omega}$ as follows: $g \cdot (g_{\omega})_{\omega} := (gg_{g^{-1}\omega}g^{-1})_{\omega}$. What are all the G-invariant subgroups of K_G ? Clearly, the trivial subgroup of K_G as well as K_G itself are G-invariant. - $\Gamma := \{e\} \leq K_G$, - \bullet $\Phi := K_G$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigsqcup_{i \in I} \Omega_i$. Let $p: \Omega \to I$ be such that $\omega \in \Omega_{p(\omega)}$ for all $\omega \in \Omega$. Set • $$\Phi_{\mathcal{P}} := \{ (s_{\omega})_{\omega} \in K_G \mid \forall \omega, \omega' \in \Omega : p(\omega) = p(\omega') \Rightarrow s_{\omega} = s_{\omega'} \} \cong \prod_{i \in I} G_{\Omega_i}$$ When G is transitive and the G_{ω} are not simple, let $N \subseteq G_{\omega_0}$. Also, let $f: \Omega \to G$, $f \mapsto f_{\omega}$ be a map such that $f_{\omega}(\omega_0) = \omega$ for all $\omega \in \Omega$. Define #### **Problem** Let Ω be a finite set and let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. Then G acts on $K_G := \prod_{\omega \in \Omega} G_{\omega}$ as follows: $g \cdot (g_{\omega})_{\omega} := (gg_{\sigma^{-1}\omega}g^{-1})_{\omega}$. What are all the G-invariant subgroups of K_G ? Clearly, the trivial subgroup of K_G as well as K_G itself are G-invariant. - $\Gamma := \{e\} < K_{G_1}$ - \bullet $\Phi := K_C$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigcup_{i \in I} \Omega_i$. Let $p:\Omega\to I$ be such that $\omega\in\Omega_{p(\omega)}$ for all $\omega\in\Omega$. Set • $$\Phi_{\mathcal{P}} := \{ (s_{\omega})_{\omega} \in K_G \mid \forall \omega, \omega' \in \Omega : p(\omega) = p(\omega') \Rightarrow s_{\omega} = s_{\omega'} \} \cong \prod_{i \in I} G_{\Omega_i}$$ When G is transitive and the G_{ω} are not simple, let $N \subseteq G_{\omega_0}$. Also, let $f:\Omega\to G,\ f\mapsto f_\omega$ be a map such that $f_\omega(\omega_0)=\omega$ for all $\omega\in\Omega$. Define • $$\Phi_N := \{ (f_\omega s_0^{(\omega)} f_\omega^{-1})_{\omega \in \Omega} \mid \forall \omega \in \Omega : s_0^{(\omega)} \in N \} \cong N^d.$$ - $\Gamma := \{e\} \leq K_G$. - \bullet $\Phi := K_G$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigsqcup_{i \in I} \Omega_i$. Let $p: \Omega \to I$ be such that $\omega \in \Omega_{p(\omega)}$ for all $\omega \in \Omega$. Set • $\Phi_{\mathcal{P}} := \{ (s_{\omega})_{\omega} \in K_G \mid \forall \omega, \omega' \in \Omega : p(\omega) = p(\omega') \Rightarrow s_{\omega} = s_{\omega'} \} \cong \prod_{i \in I} G_{\Omega_i}$ When G is transitive and the G_{ω} are not simple, let $N \subseteq G_{\omega_0}$. Also, let $f: \Omega \to G$, $f \mapsto f_{\omega}$ be a map such that $f_{\omega}(\omega_0) = \omega$ for all $\omega \in \Omega$. Define • $\Phi_{\mathcal{N}} := \{ (f_{\omega} s_0^{(\omega)} f_{\omega}^{-1})_{\omega \in \Omega} \mid \forall \omega \in \Omega : s_0^{(\omega)} \in \mathcal{N} \} \cong \mathcal{N}^d.$ - $\Gamma := \{e\} \leq K_G$. - \bullet $\Phi := K_G$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigsqcup_{i \in I} \Omega_i$. Let $p: \Omega \to I$ be such that $\omega \in \Omega_{p(\omega)}$ for all $\omega \in \Omega$. Set $$\bullet \Phi_{\mathcal{P}} := \{ (s_{\omega})_{\omega} \in K_G \mid \forall \omega, \omega' \in \Omega : p(\omega) = p(\omega') \Rightarrow s_{\omega} = s_{\omega'} \} \cong \prod_{i \in I} G_{\Omega_i}$$ When G is transitive and the G_{ω} are not simple, let $N \subseteq G_{\omega_0}$. Also, let $f: \Omega \to G$, $f \mapsto f_{\omega}$ be a map such that $f_{\omega}(\omega_0) = \omega$ for all $\omega \in \Omega$. Define $$\Phi_{\mathcal{N}} := \{ (f_{\omega} s_0^{(\omega)} f_{\omega}^{-1})_{\omega \in \Omega} \mid \forall \omega \in \Omega : s_0^{(\omega)} \in \mathcal{N} \} \cong \mathcal{N}^d.$$ When G is transitive and G_{ω_0} has non-trivial center, - $\Gamma := \{e\} \le K_G$. - \bullet $\Phi := K_G$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigsqcup_{i \in I} \Omega_i$. Let $p: \Omega \to I$ be such that $\omega \in \Omega_{p(\omega)}$ for all $\omega \in \Omega$. Set • $$\Phi_{\mathcal{P}} := \{ (s_{\omega})_{\omega} \in K_G \mid \forall \omega, \omega' \in \Omega : p(\omega) = p(\omega') \Rightarrow s_{\omega} = s_{\omega'} \} \cong \prod_{i \in I} G_{\Omega_i}$$ When G is transitive and the G_{ω} are not simple, let $N \subseteq G_{\omega_0}$. Also, let $f: \Omega \to G$, $f \mapsto f_{\omega}$ be a map such that $f_{\omega}(\omega_0) = \omega$ for all $\omega \in \Omega$. Define • $$\Phi_N := \{ (f_\omega s_0^{(\omega)} f_\omega^{-1})_{\omega \in \Omega} \mid \forall \omega \in \Omega : s_0^{(\omega)} \in N \} \cong N^d.$$ When G is transitive and G_{ω_0} has non-trivial center, let $C \leq Z(G_{\omega_0})$. - $\Gamma := \{e\} \leq K_G$. - \bullet $\Phi := K_G$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigsqcup_{i \in I} \Omega_i$. Let $p: \Omega \to I$ be such that $\omega \in \Omega_{p(\omega)}$ for all $\omega \in \Omega$. Set • $\Phi_{\mathcal{P}} := \{ (s_{\omega})_{\omega} \in K_G \mid \forall \omega, \omega' \in \Omega : p(\omega) = p(\omega') \Rightarrow s_{\omega} = s_{\omega'} \} \cong \prod_{i \in I} G_{\Omega_i}$ When G is transitive and the G_{ω} are not simple, let $N \subseteq G_{\omega_0}$. Also, let $f: \Omega \to G$, $f \mapsto f_{\omega}$ be a map such that $f_{\omega}(\omega_0) = \omega$ for all $\omega \in \Omega$. Define • $\Phi_N := \{ (f_\omega s_0^{(\omega)} f_\omega^{-1})_{\omega \in \Omega} \mid \forall \omega \in \Omega : s_0^{(\omega)} \in N \} \cong N^d.$ When G is transitive and G_{ω_0} has non-trivial center, let $C \leq Z(G_{\omega_0})$. Set - $\Gamma := \{e\} \leq K_G$. - \bullet $\Phi := K_G$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigsqcup_{i \in I} \Omega_i$. Let $p: \Omega \to I$ be such that $\omega \in \Omega_{p(\omega)}$ for all $\omega \in \Omega$. Set $\bullet \Phi_{\mathcal{P}} := \{ (s_{\omega})_{\omega} \in K_G \mid \forall \omega, \omega' \in \Omega : p(\omega) = p(\omega') \Rightarrow s_{\omega} = s_{\omega'} \} \cong \prod_{i \in I} G_{\Omega_i}$ When G is transitive and the G_{ω} are not simple, let $N \subseteq G_{\omega_0}$. Also, let $f: \Omega \to G$, $f \mapsto f_{\omega}$ be a map such that $f_{\omega}(\omega_0) = \omega$ for all $\omega \in \Omega$. Define • $\Phi_N := \{ (f_\omega s_0^{(\omega)} f_\omega^{-1})_{\omega \in \Omega} \mid \forall \omega \in \Omega : s_0^{(\omega)} \in N \} \cong N^d.$ When G is transitive and G_{ω_0} has non-trivial center, let $C \leq Z(G_{\omega_0})$. Set - $\Gamma := \{e\} \leq K_G$. - \bullet $\Phi := K_G$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigsqcup_{i \in I} \Omega_i$. Let $p: \Omega \to I$ be such that $\omega \in \Omega_{p(\omega)}$ for all $\omega \in \Omega$. Set $$\bullet \Phi_{\mathcal{P}} := \{ (s_{\omega})_{\omega} \in K_G \mid \forall \omega, \omega' \in \Omega : p(\omega) = p(\omega') \Rightarrow s_{\omega} = s_{\omega'} \} \cong \prod_{i \in I} G_{\Omega_i}$$ When G is transitive and the G_{ω} are not simple, let $N \subseteq G_{\omega_0}$. Also, let $f: \Omega \to G$, $f \mapsto f_{\omega}$ be a map such that $f_{\omega}(\omega_0) = \omega$ for all $\omega \in \Omega$. Define • $$\Phi_N := \{ (f_\omega s_0^{(\omega)} f_\omega^{-1})_{\omega \in \Omega} \mid \forall \omega \in \Omega : s_0^{(\omega)} \in N \} \cong N^d.$$ When G is transitive and G_{ω_0} has non-trivial center, let $C \leq Z(G_{\omega_0})$. Set $$\bullet \ \Delta_C := \{ (f_\omega s_0 f_\omega^{-1})_{\omega \in \Omega} \mid s_0 \in C \} \cong C.$$ When G is not perfect, - $\Gamma := \{e\} \leq K_G$. - \bullet $\Phi := K_G$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigsqcup_{i \in I} \Omega_i$. Let $p: \Omega \to I$ be such that $\omega \in \Omega_{p(\omega)}$ for all $\omega \in \Omega$. Set • $$\Phi_{\mathcal{P}} := \{ (s_{\omega})_{\omega} \in K_G \mid \forall \omega, \omega' \in \Omega : p(\omega) = p(\omega') \Rightarrow s_{\omega} = s_{\omega'} \} \cong \prod_{i \in I} G_{\Omega_i}$$ When G is transitive and the G_{ω} are not simple, let $N \subseteq G_{\omega_0}$. Also, let $f: \Omega \to G$, $f \mapsto f_{\omega}$ be a map such that $f_{\omega}(\omega_0) = \omega$ for all $\omega \in \Omega$. Define • $$\Phi_N := \{ (f_\omega s_0^{(\omega)} f_\omega^{-1})_{\omega \in \Omega} \mid \forall \omega \in \Omega : s_0^{(\omega)} \in N \} \cong N^d.$$ When G is transitive and G_{ω_0} has non-trivial center, let $C \leq Z(G_{\omega_0})$. Set When *G* is not perfect, let $\rho : G \rightarrow A$, where *A* is abelian. - $\Gamma := \{e\} \leq K_G$. - \bullet $\Phi := K_G$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigsqcup_{i \in I} \Omega_i$. Let $p: \Omega \to I$ be such that $\omega \in \Omega_{p(\omega)}$ for all $\omega \in \Omega$. Set $\bullet \Phi_{\mathcal{P}} := \{ (s_{\omega})_{\omega} \in K_G \mid \forall \omega, \omega' \in \Omega : p(\omega) = p(\omega') \Rightarrow s_{\omega} = s_{\omega'} \} \cong \prod_{i \in I} G_{\Omega_i}$ When G is transitive and the G_{ω} are not simple, let $N \subseteq G_{\omega_0}$. Also, let $f: \Omega \to G$, $f \mapsto f_{\omega}$ be a map such that $f_{\omega}(\omega_0) = \omega$ for all $\omega \in \Omega$. Define • $\Phi_N := \{ (f_\omega s_0^{(\omega)} f_\omega^{-1})_{\omega \in \Omega} \mid \forall \omega \in \Omega : s_0^{(\omega)} \in N \} \cong N^d.$ When G is transitive and G_{ω_0} has non-trivial center, let $C \leq Z(G_{\omega_0})$. Set When G is not perfect, let $\rho : G \rightarrow A$, where A is abelian. Define - $\Gamma := \{e\} \leq K_G$. - \bullet $\Phi := K_G$. Assume that G preserves a non-trivial partition $\mathcal{P}: \Omega = \bigsqcup_{i \in I} \Omega_i$. Let $p: \Omega \to I$ be such that $\omega \in \Omega_{p(\omega)}$ for all $\omega \in \Omega$. Set $$\bullet \ \Phi_{\mathcal{P}} := \{ (s_{\omega})_{\omega} \in K_G \mid \forall \omega, \omega' \in \Omega : p(\omega) = p(\omega') \Rightarrow s_{\omega} = s_{\omega'} \} \cong \prod_{i \in I} G_{\Omega_i}$$ When G is transitive and the G_{ω} are not simple, let $N \subseteq G_{\omega_0}$. Also, let $f: \Omega \to G$, $f \mapsto f_{\omega}$ be a map such that $f_{\omega}(\omega_0) = \omega$ for all $\omega \in \Omega$. Define • $$\Phi_N := \{ (f_\omega s_0^{(\omega)} f_\omega^{-1})_{\omega \in \Omega} \mid \forall \omega \in \Omega : s_0^{(\omega)} \in N \} \cong N^d.$$ When G is transitive and G_{ω_0} has non-trivial center, let $C \leq Z(G_{\omega_0})$. Set $$\bullet \ \Delta_C := \{ (f_\omega s_0 f_\omega^{-1})_{\omega \in \Omega} \mid s_0 \in C \} \cong C.$$ When G is not perfect, let $\rho : G \rightarrow A$, where A is abelian. Define • $$\Pi_{\rho} := \{ (s_{\omega})_{\omega} \in K_G \mid \prod_{\omega \in \Omega} \rho(s_{\omega}) = 1 \}.$$ #### Theorem Let $G \leq \operatorname{Sym}(\Omega)$ be primitive and G_{ω} simple non-abelian for all $\omega \in \Omega$. #### Theorem Let $G \leq \operatorname{Sym}(\Omega)$ be primitive and G_{ω} simple non-abelian for all $\omega \in \Omega$. Then Γ , Φ and Δ are the only (potential) G-invariant subgroups of K_G . #### Theorem Let $G \leq \operatorname{Sym}(\Omega)$ be primitive and G_{ω} simple non-abelian for all $\omega \in \Omega$. Then Γ , Φ and Δ are the only (potential) G-invariant subgroups of K_G . ### Sketch of proof Suppose $K \leq K_G$ is G-invariant. #### Theorem Let $G \leq \operatorname{Sym}(\Omega)$ be primitive and G_{ω} simple non-abelian for all $\omega \in \Omega$. Then Γ , Φ and Δ are the only (potential) G-invariant subgroups of K_G . ### Sketch of proof Suppose $K \leq K_G$ is G-invariant. Let $\pi_\omega : K_G \to G_\omega$ denote the natural projection. #### Theorem Let $G \leq \operatorname{Sym}(\Omega)$ be primitive and G_{ω} simple non-abelian for all $\omega \in \Omega$. Then Γ , Φ and Δ are the only (potential) G-invariant subgroups of K_G . ### Sketch of proof Suppose $K \leq K_G$ is G-invariant. Let $\pi_\omega : K_G \to G_\omega$ denote the natural projection. By G-invariance, the group $\pi_\omega(K)$ is normal in G_ω . #### Theorem Let $G \leq \operatorname{Sym}(\Omega)$ be primitive and G_{ω} simple non-abelian for all $\omega \in \Omega$. Then Γ , Φ and Δ are the only (potential) G-invariant subgroups of K_G . ### Sketch of proof Suppose $K \leq K_G$ is G-invariant. Let $\pi_\omega : K_G \to G_\omega$ denote the natural projection. By G-invariance, the group $\pi_\omega(K)$ is normal in G_ω . Since G_ω is simple, and G is transitive, either $\pi_\omega(K) = \{e\}$ for all $\omega \in \Omega$, or $\pi_\omega(K) = G_\omega$ for all $\omega \in \Omega$. #### Theorem Let $G \leq \operatorname{Sym}(\Omega)$ be primitive and G_{ω} simple non-abelian for all $\omega \in \Omega$. Then Γ , Φ and Δ are the only (potential) G-invariant subgroups of K_G . ### Sketch of proof Suppose $K \leq K_G$ is G-invariant. Let $\pi_\omega : K_G \to G_\omega$ denote the natural projection. By G-invariance, the group $\pi_\omega(K)$ is normal in G_ω . Since G_ω is simple, and G is transitive, either $\pi_\omega(K) = \{e\}$ for all $\omega \in \Omega$, or $\pi_\omega(K) = G_\omega$ for all $\omega \in \Omega$. In the first case, $K = \{e\} = \Gamma$. #### Theorem Let $G \leq \operatorname{Sym}(\Omega)$ be primitive and G_{ω} simple non-abelian for all $\omega \in \Omega$. Then Γ , Φ and Δ are the only (potential) G-invariant subgroups of K_G . ### Sketch of proof Suppose $K \leq K_G$ is G-invariant. Let $\pi_\omega : K_G \to G_\omega$ denote the natural projection. By G-invariance, the group $\pi_\omega(K)$ is normal in G_ω . Since G_ω is simple, and G is transitive, either $\pi_\omega(K) = \{e\}$ for all $\omega \in \Omega$, or $\pi_\omega(K) = G_\omega$ for all $\omega \in \Omega$. In the first case, $K = \{e\} = \Gamma$. In the second case there is, by transitivity of G, an isomorphism $\varphi : K_G \to G_\omega^d$. #### Theorem Let $G \leq \operatorname{Sym}(\Omega)$ be primitive and G_{ω} simple non-abelian for all $\omega \in \Omega$. Then Γ , Φ and Δ are the only (potential) G-invariant subgroups of K_G . ### Sketch of proof Suppose $K \leq K_G$ is G-invariant. Let $\pi_\omega: K_G \to G_\omega$ denote the natural projection. By G-invariance, the group $\pi_\omega(K)$ is normal in G_ω . Since G_ω is simple, and G is transitive, either $\pi_\omega(K) = \{e\}$ for all $\omega \in \Omega$, or $\pi_\omega(K) = G_\omega$ for all $\omega \in \Omega$. In the first case, $K = \{e\} = \Gamma$. In the second case there is, by transitivity of G, an isomorphism $\varphi: K_G \to G_{\omega_0}^d$. By [Rad17, Lemma 2.4], the group $\varphi(K)$ is a product of subdiagonals of $G_{\omega_0}^d$. #### Theorem Let $G \leq \operatorname{Sym}(\Omega)$ be primitive and G_{ω} simple non-abelian for all $\omega \in \Omega$. Then Γ , Φ and Δ are the only (potential) G-invariant subgroups of K_G . ### Sketch of proof Suppose $K \leq K_G$ is G-invariant. Let $\pi_\omega : K_G \to G_\omega$ denote the natural projection. By G-invariance, the group $\pi_\omega(K)$ is normal in G_ω . Since G_ω is simple, and G is transitive, either $\pi_\omega(K) = \{e\}$ for all $\omega \in \Omega$, or $\pi_\omega(K) = G_\omega$ for all $\omega \in \Omega$. In the first case, $K = \{e\} = \Gamma$. In the second case there is, by transitivity of G, an isomorphism $\varphi : K_G \to G_{\omega_0}^d$. By [Rad17, Lemma 2.4], the group $\varphi(K)$ is a product of subdiagonals of $G_{\omega_0}^d$. As G is primitive, the underlying partition of this product is trivial. 30/11/2021 #### Theorem Let $G \leq \operatorname{Sym}(\Omega)$ be primitive and G_{ω} simple non-abelian for all $\omega \in \Omega$. Then Γ , Φ and Δ are the only (potential) G-invariant subgroups of K_G . ### Sketch of proof Suppose $K \leq K_G$ is G-invariant. Let $\pi_\omega : K_G \to G_\omega$ denote the natural projection. By G-invariance, the group $\pi_\omega(K)$ is normal in G_ω . Since G_ω is simple, and G is transitive, either $\pi_\omega(K) = \{e\}$ for all $\omega \in \Omega$, or $\pi_\omega(K) = G_\omega$ for all $\omega \in \Omega$. In the first case, $K = \{e\} = \Gamma$. In the second case there is, by transitivity of G, an isomorphism $\varphi : K_G \to G_{\omega_0}^d$. By [Rad17, Lemma 2.4], the group $\varphi(K)$ is a product of subdiagonals of $G_{\omega_0}^d$. As G is primitive, the underlying partition of this product is trivial. Hence either $K = \Phi = K_G$, or $K = \Delta$.