Compatibility Cocycles of Finite Permutation Groups

Stephan Tornier (joint work with CMSC, mostly Alice Devillers)

December 8, 2022

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. A *compatibility cocycle* of G is a map $z: G \times \Omega \to G$

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. A *compatibility cocycle* of G is a map $z: G \times \Omega \to G$ such that

(i) (cocycle)
$$\forall g, h \in G \ \forall \omega \in \Omega : \ z(gh, \omega) = z(g, h\omega)z(h, \omega)$$
,

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. A *compatibility cocycle* of G is a map $z: G \times \Omega \to G$ such that

- (i) (cocycle) $\forall g, h \in G \ \forall \omega \in \Omega : \ z(gh, \omega) = z(g, h\omega)z(h, \omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega$.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. A *compatibility cocycle* of G is a map $z: G \times \Omega \to G$ such that

- (i) (cocycle) $\forall g,h \in G \ \forall \omega \in \Omega: \ z(gh,\omega) = z(g,h\omega)z(h,\omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega.$

A compatibility cocycle is involutive if, in addition,

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. A *compatibility cocycle* of G is a map $z: G \times \Omega \to G$ such that

- (i) (cocycle) $\forall g,h \in G \ \forall \omega \in \Omega: \ z(gh,\omega) = z(g,h\omega)z(h,\omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega$.

A compatibility cocycle is involutive if, in addition,

(iii) (involutive) $\forall g \in G \ \forall \omega \in \Omega : \ z(z(g,\omega),\omega) = g$.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. A *compatibility cocycle* of G is a map $z: G \times \Omega \to G$ such that

- (i) (cocycle) $\forall g,h \in G \ \forall \omega \in \Omega: \ z(gh,\omega) = z(g,h\omega)z(h,\omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega.$

A compatibility cocycle is involutive if, in addition,

(iii) (involutive) $\forall g \in G \ \forall \omega \in \Omega : \ z(z(g,\omega),\omega) = g$.

Example

The *trivial* compatibility cocycle:

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. A *compatibility cocycle* of G is a map $z: G \times \Omega \to G$ such that

- (i) (cocycle) $\forall g,h \in G \ \forall \omega \in \Omega: \ z(gh,\omega) = z(g,h\omega)z(h,\omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega.$

A compatibility cocycle is involutive if, in addition,

(iii) (involutive) $\forall g \in G \ \forall \omega \in \Omega : \ z(z(g,\omega),\omega) = g$.

Example

The *trivial* compatibility cocycle: $z_0(g,\omega) := g$ for all $g \in G$ and $\omega \in \Omega$.

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. A *compatibility cocycle* of G is a map $z: G \times \Omega \to G$ such that

- (i) (cocycle) $\forall g, h \in G \ \forall \omega \in \Omega : \ z(gh, \omega) = z(g, h\omega)z(h, \omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega.$

A compatibility cocycle is involutive if, in addition,

(iii) (involutive) $\forall g \in G \ \forall \omega \in \Omega : \ z(z(g,\omega),\omega) = g$.

Example

The *trivial* compatibility cocycle: $z_0(g,\omega) := g$ for all $g \in G$ and $\omega \in \Omega$.

Questions

What is the size and structure of the set of compatibility cocycles of G?

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. A *compatibility cocycle* of G is a map $z: G \times \Omega \to G$ such that

- (i) (cocycle) $\forall g, h \in G \ \forall \omega \in \Omega : \ z(gh, \omega) = z(g, h\omega)z(h, \omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega.$

A compatibility cocycle is involutive if, in addition,

(iii) (involutive) $\forall g \in G \ \forall \omega \in \Omega : \ z(z(g,\omega),\omega) = g$.

Example

The *trivial* compatibility cocycle: $z_0(g,\omega) := g$ for all $g \in G$ and $\omega \in \Omega$.

Questions

What is the size and structure of the set of compatibility cocycles of G? What about the subset of involutive compatibility cocycles of G?

$ \Omega $	Permutation Group	ICC(G)	CC(<i>G</i>)
2	S_2	1	1
3	$C_3 = A_3$	1	1
3	$S_3 = D_3 = AGL(1,3)$	4	8
4	C ₄	1	1
4	$C_2 \times C_2$	1	1
4	D_4	8	16
4	A_4	28	81
4	S_4	256	2160
5	C ₅	1	1
5	D_5	16	32
5	AGL(1,5)	272	1024
5	A_5	?	?
5	S_5	?	?
6	D_6	32	64
7	D ₇	64	128

Proposition

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

Proposition

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. The set $\operatorname{CC}(G)$ is a monoid.

Proposition

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. The set $\operatorname{CC}(G)$ is a monoid. Multiplication: $(z \circ z')(g, \omega) := z(z'(g, \omega), \omega)$.

Proposition

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. The set $\operatorname{CC}(G)$ is a monoid. Multiplication: $(z \circ z')(g, \omega) := z(z'(g, \omega), \omega)$. Unit: $z_0(g, \omega) := g$.

Proposition

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. The set $\operatorname{CC}(G)$ is a monoid.

Multiplication: $(z \circ z')(g, \omega) := z(z'(g, \omega), \omega)$. Unit: $z_0(g, \omega) := g$.

Proposition

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. The set $\operatorname{CC}(G)$ is a monoid.

Multiplication: $(z \circ z')(g, \omega) := z(z'(g, \omega), \omega)$. Unit: $z_0(g, \omega) := g$.

Define
$$\Phi(G) := G \ltimes \prod_{\omega \in \Omega} G_{\omega}$$

Proposition

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. The set $\operatorname{CC}(G)$ is a monoid.

Multiplication: $(z \circ z')(g, \omega) := z(z'(g, \omega), \omega)$. Unit: $z_0(g, \omega) := g$.

Define
$$\Phi(G) := G \ltimes \prod_{\omega \in \Omega} G_{\omega}$$
 and let $K_G := \prod_{\omega \in \Omega} G_{\omega} \leq \Phi(G)$.

Proposition

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. The set $\operatorname{CC}(G)$ is a monoid.

Multiplication: $(z \circ z')(g, \omega) := z(z'(g, \omega), \omega)$. Unit: $z_0(g, \omega) := g$.

The set ICC(G) is the set of involutive elements in CC(G).

Define $\Phi(G) := G \ltimes \prod_{\omega \in \Omega} G_{\omega}$ and let $K_G := \prod_{\omega \in \Omega} G_{\omega} \leq \Phi(G)$. The group $\Phi(G)$ acts on CC(G).

Proposition

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. The set $\operatorname{CC}(G)$ is a monoid.

Multiplication: $(z \circ z')(g, \omega) := z(z'(g, \omega), \omega)$. Unit: $z_0(g, \omega) := g$.

The set ICC(G) is the set of involutive elements in CC(G).

Define $\Phi(G) := G \ltimes \prod_{\omega \in \Omega} G_{\omega}$ and let $K_G := \prod_{\omega \in \Omega} G_{\omega} \leq \Phi(G)$.

The group $\Phi(G)$ acts on CC(G). For $a \in G \leq \Phi(G)$

Proposition

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. The set $\operatorname{CC}(G)$ is a monoid.

Multiplication: $(z \circ z')(g, \omega) := z(z'(g, \omega), \omega)$. Unit: $z_0(g, \omega) := g$.

The set ICC(G) is the set of involutive elements in CC(G).

Define $\Phi(G) := G \ltimes \prod_{\omega \in \Omega} G_{\omega}$ and let $K_G := \prod_{\omega \in \Omega} G_{\omega} \leq \Phi(G)$. The group $\Phi(G)$ acts on CC(G). For $a \in G \leq \Phi(G)$ and $k := (k_{\omega})_{\omega} \in K_G$:

Proposition

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. The set $\operatorname{CC}(G)$ is a monoid.

Multiplication: $(z \circ z')(g, \omega) := z(z'(g, \omega), \omega)$. Unit: $z_0(g, \omega) := g$.

Define
$$\Phi(G) := G \ltimes \prod_{\omega \in \Omega} G_{\omega}$$
 and let $K_G := \prod_{\omega \in \Omega} G_{\omega} \leq \Phi(G)$.
The group $\Phi(G)$ acts on $CC(G)$. For $a \in G \leq \Phi(G)$ and $k := (k_{\omega})_{\omega} \in K_G$:

$$z^{a}(g,\omega) = az(a^{-1}ga, a^{-1}\omega)a^{-1}$$
, and $z^{k}(g,\omega) = k_{g\omega}z(g,\omega)k_{\omega}^{-1}$

Proposition

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. The set $\operatorname{CC}(G)$ is a monoid.

Multiplication: $(z \circ z')(g, \omega) := z(z'(g, \omega), \omega)$. Unit: $z_0(g, \omega) := g$.

The set ICC(G) is the set of involutive elements in CC(G).

Define $\Phi(G) := G \ltimes \prod_{\omega \in \Omega} G_{\omega}$ and let $K_G := \prod_{\omega \in \Omega} G_{\omega} \leq \Phi(G)$. The group $\Phi(G)$ acts on CC(G). For $a \in G \leq \Phi(G)$ and $k := (k_{\omega})_{\omega} \in K_G$:

$$z^{a}(g,\omega) = az(a^{-1}ga, a^{-1}\omega)a^{-1}$$
, and $z^{k}(g,\omega) = k_{g\omega}z(g,\omega)k_{\omega}^{-1}$

Proposition

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

Proposition

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group. The set $\operatorname{CC}(G)$ is a monoid.

Multiplication: $(z \circ z')(g, \omega) := z(z'(g, \omega), \omega)$. Unit: $z_0(g, \omega) := g$.

The set ICC(G) is the set of involutive elements in CC(G).

Define $\Phi(G) := G \ltimes \prod_{\omega \in \Omega} G_{\omega}$ and let $K_G := \prod_{\omega \in \Omega} G_{\omega} \leq \Phi(G)$. The group $\Phi(G)$ acts on CC(G). For $a \in G \leq \Phi(G)$ and $k := (k_{\omega})_{\omega} \in K_G$:

$$z^a(g,\omega) = az(a^{-1}ga, a^{-1}\omega)a^{-1}$$
, and $z^k(g,\omega) = k_{g\omega}z(g,\omega)k_{\omega}^{-1}$

Proposition

Let $G \leq \operatorname{Sym}(\Omega)$ be a permutation group.

The map $K_G \to CC(G)$ given by $k \mapsto z_0^k$ is a monoid homomorphism.

 $|\Omega|$

 $CC(G)/\Phi(G)$

$ \Omega $	Permutation Group	ICC(<i>G</i>)	CC(<i>G</i>)	$CC(G)/\Phi(G)$
2	S_2	1	1	1
3	$C_3 = A_3$	1	1	1
3	$S_3 = D_3 = AGL(1,3)$	4	8	4 + 4
4	C ₄	1	1	1
4	$C_2 \times C_2$	1	1	1
4	D_4	8	16	8 + 8
4	A_4	28	81	27 + 27 + 27
4	S_4	256	2160	216 + 648 + 1296
5	C ₅	1	1	1
5	D_5	16	32	16 + 16
5	AGL(1,5)	272	1024	256 + 256 + 256 + 256
5	A_5	?	?	?
5	S_5	?	?	?
6	D_6	32	64	32 + 32
7	D ₇	64	128	64 + 64

Left-absorbing cocycles

Example

Let $G \leq \operatorname{Sym}(\Omega)$ be a *transitive* permutation group and let $\omega_0 \in \Omega$.

Example

Let $G \leq \operatorname{Sym}(\Omega)$ be a *transitive* permutation group and let $\omega_0 \in \Omega$. For $f: \Omega \to G$, $\omega \mapsto f_\omega$ such that $f_\omega(\omega_0) = \omega$,

Example

Example

Let $G \leq \operatorname{Sym}(\Omega)$ be a *transitive* permutation group and let $\omega_0 \in \Omega$. For $f: \Omega \to G$, $\omega \mapsto f_{\omega}$ such that $f_{\omega}(\omega_0) = \omega$, define $z_f(g, \omega) := f_{g\omega} f_{\omega}^{-1}$.

(i) We have $z_f \in CC(G)$

Example

Let $G \leq \operatorname{Sym}(\Omega)$ be a *transitive* permutation group and let $\omega_0 \in \Omega$. For $f: \Omega \to G$, $\omega \mapsto f_{\omega}$ such that $f_{\omega}(\omega_0) = \omega$, define $z_f(g,\omega) := f_{g\omega} f_{\omega}^{-1}$.

(i) We have $z_f \in CC(G)$ and z_f is left-absorbing:

Example

Let $G \leq \operatorname{Sym}(\Omega)$ be a *transitive* permutation group and let $\omega_0 \in \Omega$. For $f: \Omega \to G$, $\omega \mapsto f_\omega$ such that $f_\omega(\omega_0) = \omega$, define $z_f(g,\omega) := f_{g\omega} f_\omega^{-1}$.

(i) We have $z_f \in CC(G)$ and z_f is left-absorbing: $\forall z \in CC(G)$: $z_f \circ z = z_f$.

Example

- (i) We have $z_f \in CC(G)$ and z_f is left-absorbing: $\forall z \in CC(G)$: $z_f \circ z = z_f$.
- (ii) This construction does not depend on the choice of the base point ω_0 .

Example

- (i) We have $z_f \in CC(G)$ and z_f is left-absorbing: $\forall z \in CC(G)$: $z_f \circ z = z_f$.
- (ii) This construction does not depend on the choice of the base point ω_0 .
- (iii) We may always pick $f_{\omega_0}=\operatorname{id}$,

Example

- (i) We have $z_f \in CC(G)$ and z_f is left-absorbing: $\forall z \in CC(G)$: $z_f \circ z = z_f$.
- (ii) This construction does not depend on the choice of the base point ω_0 .
- (iii) We may always pick $f_{\omega_0}=\operatorname{id}$, and $|\{z_f|f\}|=\prod_{\omega\neq\omega_0}|G_{\omega}|$

Example

- (i) We have $z_f \in CC(G)$ and z_f is left-absorbing: $\forall z \in CC(G)$: $z_f \circ z = z_f$.
- (ii) This construction does not depend on the choice of the base point ω_0 .
- (iii) We may always pick $f_{\omega_0}=\operatorname{id}$, and $|\{z_f|f\}|=\prod_{\omega\neq\omega_0}|G_{\omega}|=|G_{\omega_0}|^{|\Omega|-1}$.

Example

- (i) We have $z_f \in CC(G)$ and z_f is left-absorbing: $\forall z \in CC(G)$: $z_f \circ z = z_f$.
- (ii) This construction does not depend on the choice of the base point ω_0 .
- (iii) We may always pick $f_{\omega_0}=\operatorname{id}$, and $|\{z_f|f\}|=\prod_{\omega\neq\omega_0}|G_{\omega}|=|G_{\omega_0}|^{|\Omega|-1}$.
- (iv) Every left-absorbing compatibility cocycle of G is of the form z_f .

Example

- (i) We have $z_f \in CC(G)$ and z_f is left-absorbing: $\forall z \in CC(G)$: $z_f \circ z = z_f$.
- (ii) This construction does not depend on the choice of the base point ω_0 .
- (iii) We may always pick $f_{\omega_0}=\operatorname{id}$, and $|\{z_f|f\}|=\prod_{\omega\neq\omega_0}|G_{\omega}|=|G_{\omega_0}|^{|\Omega|-1}$.
- (iv) Every left-absorbing compatibility cocycle of G is of the form z_f . Let LA(G) be the set of all left-absorbing compatibility cocycles of G.

Example

- (i) We have $z_f \in CC(G)$ and z_f is left-absorbing: $\forall z \in CC(G)$: $z_f \circ z = z_f$.
- (ii) This construction does not depend on the choice of the base point ω_0 .
- (iii) We may always pick $f_{\omega_0}=\operatorname{id}$, and $|\{z_f|f\}|=\prod_{\omega\neq\omega_0}|G_{\omega}|=|G_{\omega_0}|^{|\Omega|-1}$.
- (iv) Every left-absorbing compatibility cocycle of G is of the form z_f . Let LA(G) be the set of all left-absorbing compatibility cocycles of G.
- (v) The set $LA(G) \subseteq CC(G)$ is multiplication-closed

Example

- (i) We have $z_f \in CC(G)$ and z_f is left-absorbing: $\forall z \in CC(G)$: $z_f \circ z = z_f$.
- (ii) This construction does not depend on the choice of the base point ω_0 .
- (iii) We may always pick $f_{\omega_0}=\operatorname{id}$, and $|\{z_f|f\}|=\prod_{\omega\neq\omega_0}|G_{\omega}|=|G_{\omega_0}|^{|\Omega|-1}$.
- (iv) Every left-absorbing compatibility cocycle of G is of the form z_f . Let LA(G) be the set of all left-absorbing compatibility cocycles of G.
- (v) The set $LA(G) \subseteq CC(G)$ is multiplication-closed and forms a K_G -orbit.

Example

Let $G \leq \operatorname{Sym}(\Omega)$ be a *transitive* permutation group and let $\omega_0 \in \Omega$. For $f: \Omega \to G$, $\omega \mapsto f_{\omega}$ such that $f_{\omega}(\omega_0) = \omega$, define $z_f(g, \omega) := f_{g\omega} f_{\omega}^{-1}$.

- (i) We have $z_f \in CC(G)$ and z_f is left-absorbing: $\forall z \in CC(G)$: $z_f \circ z = z_f$.
- (ii) This construction does not depend on the choice of the base point ω_0 .
- (iii) We may always pick $f_{\omega_0}=\operatorname{id}$, and $|\{z_f|f\}|=\prod_{\omega\neq\omega_0}|G_{\omega}|=|G_{\omega_0}|^{|\Omega|-1}$.
- (iv) Every left-absorbing compatibility cocycle of G is of the form z_f . Let LA(G) be the set of all left-absorbing compatibility cocycles of G.
- (v) The set LA(G) \subseteq CC(G) is multiplication-closed and forms a K_G -orbit.

Proposition (and Open Problem)

Example

Let $G \leq \operatorname{Sym}(\Omega)$ be a *transitive* permutation group and let $\omega_0 \in \Omega$. For $f: \Omega \to G$, $\omega \mapsto f_{\omega}$ such that $f_{\omega}(\omega_0) = \omega$, define $z_f(g, \omega) := f_{g\omega} f_{\omega}^{-1}$.

- (i) We have $z_f \in CC(G)$ and z_f is left-absorbing: $\forall z \in CC(G)$: $z_f \circ z = z_f$.
- (ii) This construction does not depend on the choice of the base point ω_0 .
- (iii) We may always pick $f_{\omega_0}=\operatorname{id}$, and $|\{z_f|f\}|=\prod_{\omega\neq\omega_0}|G_{\omega}|=|G_{\omega_0}|^{|\Omega|-1}$.
- (iv) Every left-absorbing compatibility cocycle of G is of the form z_f . Let LA(G) be the set of all left-absorbing compatibility cocycles of G.
- (v) The set LA(G) \subseteq CC(G) is multiplication-closed and forms a K_G -orbit.

Proposition (and Open Problem)

Example

Let $G \leq \operatorname{Sym}(\Omega)$ be a *transitive* permutation group and let $\omega_0 \in \Omega$. For $f: \Omega \to G$, $\omega \mapsto f_\omega$ such that $f_\omega(\omega_0) = \omega$, define $z_f(g,\omega) := f_{g\omega} f_\omega^{-1}$.

- (i) We have $z_f \in CC(G)$ and z_f is left-absorbing: $\forall z \in CC(G)$: $z_f \circ z = z_f$.
- (ii) This construction does not depend on the choice of the base point ω_0 .
- (iii) We may always pick $f_{\omega_0}=\operatorname{id}$, and $|\{z_f|f\}|=\prod_{\omega\neq\omega_0}|G_{\omega}|=|G_{\omega_0}|^{|\Omega|-1}$.
- (iv) Every left-absorbing compatibility cocycle of G is of the form z_f . Let LA(G) be the set of all left-absorbing compatibility cocycles of G.
- (v) The set LA(G) \subseteq CC(G) is multiplication-closed and forms a K_G -orbit.

Proposition (and Open Problem)

$$G$$
 is regular $\Leftrightarrow CC(G) = \{z_0\}$

Example

Let $G \leq \operatorname{Sym}(\Omega)$ be a *transitive* permutation group and let $\omega_0 \in \Omega$. For $f: \Omega \to G$, $\omega \mapsto f_\omega$ such that $f_\omega(\omega_0) = \omega$, define $z_f(g,\omega) := f_{g\omega} f_\omega^{-1}$.

- (i) We have $z_f \in CC(G)$ and z_f is left-absorbing: $\forall z \in CC(G)$: $z_f \circ z = z_f$.
- (ii) This construction does not depend on the choice of the base point ω_0 .
- (iii) We may always pick $f_{\omega_0}=\operatorname{id}$, and $|\{z_f|f\}|=\prod_{\omega\neq\omega_0}|G_{\omega}|=|G_{\omega_0}|^{|\Omega|-1}$.
- (iv) Every left-absorbing compatibility cocycle of G is of the form z_f . Let LA(G) be the set of all left-absorbing compatibility cocycles of G.
- (v) The set LA(G) \subseteq CC(G) is multiplication-closed and forms a K_G -orbit.

Proposition (and Open Problem)

G is regular
$$\Leftrightarrow CC(G) = \{z_0\} \Leftrightarrow CC(G)$$
 is a group

Example

Let $G \leq \operatorname{Sym}(\Omega)$ be a *transitive* permutation group and let $\omega_0 \in \Omega$. For $f: \Omega \to G$, $\omega \mapsto f_{\omega}$ such that $f_{\omega}(\omega_0) = \omega$, define $z_f(g, \omega) := f_{g\omega} f_{\omega}^{-1}$.

- (i) We have $z_f \in CC(G)$ and z_f is left-absorbing: $\forall z \in CC(G)$: $z_f \circ z = z_f$.
- (ii) This construction does not depend on the choice of the base point ω_0 .
- (iii) We may always pick $f_{\omega_0}=\operatorname{id}$, and $|\{z_f|f\}|=\prod_{\omega\neq\omega_0}|G_{\omega}|=|G_{\omega_0}|^{|\Omega|-1}$.
- (iv) Every left-absorbing compatibility cocycle of G is of the form z_f . Let LA(G) be the set of all left-absorbing compatibility cocycles of G.
- (v) The set LA(G) \subseteq CC(G) is multiplication-closed and forms a K_G -orbit.

Proposition (and Open Problem)

$$G$$
 is regular \Leftrightarrow $CC(G) = \{z_0\} \Leftrightarrow CC(G)$ is a group $(\stackrel{?}{\Leftrightarrow} ICC(G) = \{z_0\})$.

- (i) (cocycle) $\forall g, h \in G \ \forall \omega \in \Omega : \ z(gh, \omega) = z(g, h\omega)z(h, \omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega.$
- (iii) (involutive) $\forall g \in G \ \forall \omega \in \Omega : \ z(z(g,\omega),\omega) = g.$

- (i) (cocycle) $\forall g,h \in G \ \forall \omega \in \Omega: \ z(gh,\omega) = z(g,h\omega)z(h,\omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega$.
- (iii) (involutive) $\forall g \in G \ \forall \omega \in \Omega : \ z(z(g,\omega),\omega) = g.$

Proposition

Let $G = \langle S \mid R \rangle \leq \operatorname{Sym}(\Omega)$,

- (i) (cocycle) $\forall g,h \in G \ \forall \omega \in \Omega : \ z(gh,\omega) = z(g,h\omega)z(h,\omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega.$
- (iii) (involutive) $\forall g \in G \ \forall \omega \in \Omega : \ z(z(g,\omega),\omega) = g.$

Proposition

Let $G = \langle S \mid R \rangle \leq \operatorname{Sym}(\Omega)$, where $1 \notin S$

- (i) (cocycle) $\forall g,h \in G \ \forall \omega \in \Omega: \ z(gh,\omega) = z(g,h\omega)z(h,\omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega.$
- (iii) (involutive) $\forall g \in G \ \forall \omega \in \Omega : \ z(z(g,\omega),\omega) = g$.

Proposition

Let $G = \langle S \mid R \rangle \leq \operatorname{Sym}(\Omega)$, where $1 \notin S$ and $s^{|s|} \in R$ for every $s \in S$.

- (i) (cocycle) $\forall g,h \in G \ \forall \omega \in \Omega : \ z(gh,\omega) = z(g,h\omega)z(h,\omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega$.
- (iii) (involutive) $\forall g \in G \ \forall \omega \in \Omega : \ z(z(g,\omega),\omega) = g.$

Proposition

Let $G = \langle S \mid R \rangle \leq \operatorname{Sym}(\Omega)$, where $1 \notin S$ and $s^{|s|} \in R$ for every $s \in S$. If $z' : S \times \Omega \to G$

- (i) (cocycle) $\forall g,h \in G \ \forall \omega \in \Omega : \ z(gh,\omega) = z(g,h\omega)z(h,\omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega$.
- (iii) (involutive) $\forall g \in G \ \forall \omega \in \Omega : \ z(z(g,\omega),\omega) = g.$

Proposition

- (i) (cocycle) $\forall g,h \in G \ \forall \omega \in \Omega: \ z(gh,\omega) = z(g,h\omega)z(h,\omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega$.
- (iii) (involutive) $\forall g \in G \ \forall \omega \in \Omega : \ z(z(g,\omega),\omega) = g.$

Proposition

Let $G = \langle S \mid R \rangle \leq \operatorname{Sym}(\Omega)$, where $1 \notin S$ and $s^{|s|} \in R$ for every $s \in S$. If $z' : S \times \Omega \to G$ satisfies $z'(s_1, s_2 \cdots s_n \omega) z'(s_2, s_3 \cdots s_n \omega) \cdots z'(s_n, \omega) = 1$ for every relation $s_1 \cdots s_n \in R$ and $\omega \in \Omega$ then

(i) there is a unique cocycle extension $z : G \times \Omega \to G$ of z'.

- (i) (cocycle) $\forall g, h \in G \ \forall \omega \in \Omega : \ z(gh, \omega) = z(g, h\omega)z(h, \omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega.$
- (iii) (involutive) $\forall g \in G \ \forall \omega \in \Omega : \ z(z(g,\omega),\omega) = g.$

Proposition

- (i) there is a unique cocycle extension $z: G \times \Omega \to G$ of z'. Moreover,
- (ii) the map z satisfies compatibility if and only if it satisfies compatibility on generators,

- (i) (cocycle) $\forall g, h \in G \ \forall \omega \in \Omega : \ z(gh, \omega) = z(g, h\omega)z(h, \omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega.$
- (iii) (involutive) $\forall g \in G \ \forall \omega \in \Omega : \ z(z(g,\omega),\omega) = g$.

Proposition

- (i) there is a unique cocycle extension $z: G \times \Omega \to G$ of z'. Moreover,
- (ii) the map z satisfies compatibility if and only if it satisfies compatibility on generators, i.e. $z'(s,\omega)\omega = s\omega$ for all $s \in S$ and $\omega \in \Omega$.

- (i) (cocycle) $\forall g, h \in G \ \forall \omega \in \Omega : \ z(gh, \omega) = z(g, h\omega)z(h, \omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega.$
- (iii) (involutive) $\forall g \in G \ \forall \omega \in \Omega : \ z(z(g,\omega),\omega) = g.$

Proposition

- (i) there is a unique cocycle extension $z: G \times \Omega \to G$ of z'. Moreover,
- (ii) the map z satisfies compatibility if and only if it satisfies compatibility on generators, i.e. $z'(s,\omega)\omega = s\omega$ for all $s \in S$ and $\omega \in \Omega$. Finally,
- (iii) the map z is involutive if it satisfies compatibility and is involutive on generators,

- (i) (cocycle) $\forall g, h \in G \ \forall \omega \in \Omega : \ z(gh, \omega) = z(g, h\omega)z(h, \omega)$, and
- (ii) (compatibility) $\forall g \in G \ \forall \omega \in \Omega : \ z(g,\omega)\omega = g\omega$.
- (iii) (involutive) $\forall g \in G \ \forall \omega \in \Omega : \ z(z(g,\omega),\omega) = g.$

Proposition

Let $G = \langle S \mid R \rangle \leq \operatorname{Sym}(\Omega)$, where $1 \notin S$ and $s^{|s|} \in R$ for every $s \in S$. If $z' : S \times \Omega \to G$ satisfies $z'(s_1, s_2 \cdots s_n \omega) z'(s_2, s_3 \cdots s_n \omega) \cdots z'(s_n, \omega) = 1$ for every relation $s_1 \cdots s_n \in R$ and $\omega \in \Omega$ then

- (i) there is a unique cocycle extension $z: G \times \Omega \to G$ of z'. Moreover,
- (ii) the map z satisfies compatibility if and only if it satisfies compatibility on generators, i.e. $z'(s,\omega)\omega = s\omega$ for all $s \in S$ and $\omega \in \Omega$. Finally,
- (iii) the map z is involutive if it satisfies compatibility and is involutive on generators, i.e. $z(z'(s,\omega),\omega)=1$ for all $s\in S$ and $\omega\in\Omega$.

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥Q@

(i) Consider the dihedral group $G := D_n \leq \operatorname{Sym}(n)$ for $n \in \mathbb{N}_{>3}$.

(i) Consider the dihedral group $G := D_n \leq \operatorname{Sym}(n)$ for $n \in \mathbb{N}_{>3}$. Then

$$CC(G) = ICC(G) \sqcup LA(G)$$

(i) Consider the dihedral group $G := D_n \leq \operatorname{Sym}(n)$ for $n \in \mathbb{N}_{>3}$. Then

$$CC(G) = ICC(G) \sqcup LA(G) = z_0^{K_G} \sqcup LA(G)$$

(i) Consider the dihedral group $G:=D_n\leq \operatorname{Sym}(n)$ for $n\in\mathbb{N}_{\geq 3}$. Then

$$\mathsf{CC}(G) = \mathsf{ICC}(G) \sqcup \mathsf{LA}(G) = z_0^{K_G} \sqcup \mathsf{LA}(G) \cong K_G/\langle \delta \rangle \sqcup \mathsf{LA}(G).$$

(i) Consider the dihedral group $G := D_n \leq \operatorname{Sym}(n)$ for $n \in \mathbb{N}_{\geq 3}$. Then

$$\mathsf{CC}(G) = \mathsf{ICC}(G) \sqcup \mathsf{LA}(G) = z_0^{K_G} \sqcup \mathsf{LA}(G) \cong K_G/\langle \delta \rangle \sqcup \mathsf{LA}(G).$$

Furthermore, for $k \in K_G$ and $z_f \in LA(G)$

(i) Consider the dihedral group $G:=D_n\leq \operatorname{Sym}(n)$ for $n\in\mathbb{N}_{\geq 3}$. Then

$$\mathsf{CC}(G) = \mathsf{ICC}(G) \sqcup \mathsf{LA}(G) = z_0^{K_G} \sqcup \mathsf{LA}(G) \cong K_G/\langle \delta \rangle \sqcup \mathsf{LA}(G).$$

Furthermore, for $k \in K_G$ and $z_f \in LA(G)$ we have $z_0^k \circ z_f$

(i) Consider the dihedral group $G:=D_n\leq \operatorname{Sym}(n)$ for $n\in\mathbb{N}_{\geq 3}$. Then

$$CC(G) = ICC(G) \sqcup LA(G) = z_0^{K_G} \sqcup LA(G) \cong K_G/\langle \delta \rangle \sqcup LA(G).$$

Furthermore, for $k \in K_G$ and $z_f \in LA(G)$ we have $z_0^k \circ z_f = z_{kf}$.

(i) Consider the dihedral group $G:=D_n\leq \operatorname{Sym}(n)$ for $n\in\mathbb{N}_{\geq 3}.$ Then

$$CC(G) = ICC(G) \sqcup LA(G) = z_0^{K_G} \sqcup LA(G) \cong K_G/\langle \delta \rangle \sqcup LA(G).$$

Furthermore, for $k \in K_G$ and $z_f \in LA(G)$ we have $z_0^k \circ z_f = z_{kf}$.

(ii) Let $p \ge 3$ be prime and consider $G := AGL(1, p) \le Sym(p)$.

(i) Consider the dihedral group $G:=D_n\leq \operatorname{\mathsf{Sym}}(n)$ for $n\in\mathbb{N}_{\geq 3}$. Then

$$CC(G) = ICC(G) \sqcup LA(G) = z_0^{K_G} \sqcup LA(G) \cong K_G/\langle \delta \rangle \sqcup LA(G).$$

Furthermore, for $k \in K_G$ and $z_f \in LA(G)$ we have $z_0^k \circ z_f = z_{kf}$.

(ii) Let $p \ge 3$ be prime and consider $G := AGL(1, p) \le Sym(p)$. Then

$$|\operatorname{CC}(G)| = (p-1)^p$$

(i) Consider the dihedral group $G:=D_n\leq \operatorname{\mathsf{Sym}}(n)$ for $n\in\mathbb{N}_{\geq 3}.$ Then

$$\mathsf{CC}(G) = \mathsf{ICC}(G) \sqcup \mathsf{LA}(G) = z_0^{\mathcal{K}_G} \sqcup \mathsf{LA}(G) \cong \mathcal{K}_G/\langle \delta \rangle \sqcup \mathsf{LA}(G).$$

Furthermore, for $k \in K_G$ and $z_f \in LA(G)$ we have $z_0^k \circ z_f = z_{kf}$.

(ii) Let $p \geq 3$ be prime and consider $G := \mathsf{AGL}(1,p) \leq \mathsf{Sym}(p)$. Then

$$|\mathsf{CC}(G)| = (p-1)^p \text{ and } |\mathsf{ICC}(G)| = \begin{cases} (p-1)^{p-1} & p=3\\ (p-1)^{p-1} + 2^{p-1} & p \ge 5 \end{cases}$$

(i) Consider the dihedral group $G:=D_n\leq \operatorname{Sym}(n)$ for $n\in\mathbb{N}_{\geq 3}$. Then

$$\mathsf{CC}(G) = \mathsf{ICC}(G) \sqcup \mathsf{LA}(G) = z_0^{K_G} \sqcup \mathsf{LA}(G) \cong K_G/\langle \delta \rangle \sqcup \mathsf{LA}(G).$$

Furthermore, for $k \in K_G$ and $z_f \in LA(G)$ we have $z_0^k \circ z_f = z_{kf}$.

(ii) Let $p \ge 3$ be prime and consider $G := AGL(1, p) \le Sym(p)$. Then

$$|\mathsf{CC}(G)| = (p-1)^p \text{ and } |\mathsf{ICC}(G)| = \begin{cases} (p-1)^{p-1} & p=3\\ (p-1)^{p-1} + 2^{p-1} & p \ge 5 \end{cases}$$

(iii) Let $n \in \mathbb{N}_{\geq 2}$ consider $G := C_n \wr C_2 \leq \operatorname{Sym}(2n)$.

(i) Consider the dihedral group $G:=D_n\leq \operatorname{\mathsf{Sym}}(n)$ for $n\in\mathbb{N}_{\geq 3}.$ Then

$$\mathsf{CC}(G) = \mathsf{ICC}(G) \sqcup \mathsf{LA}(G) = z_0^{K_G} \sqcup \mathsf{LA}(G) \cong K_G/\langle \delta \rangle \sqcup \mathsf{LA}(G).$$

Furthermore, for $k \in K_G$ and $z_f \in LA(G)$ we have $z_0^k \circ z_f = z_{kf}$.

(ii) Let $p \geq 3$ be prime and consider $G := \mathsf{AGL}(1,p) \leq \mathsf{Sym}(p)$. Then

$$|\mathsf{CC}(G)| = (p-1)^p \text{ and } |\mathsf{ICC}(G)| = \begin{cases} (p-1)^{p-1} & p=3\\ (p-1)^{p-1} + 2^{p-1} & p \ge 5 \end{cases}$$

(iii) Let $n \in \mathbb{N}_{\geq 2}$ consider $G := C_n \wr C_2 \leq \operatorname{Sym}(2n)$. Then

$$|\mathsf{CC}(G)| = n^{2n}$$

(i) Consider the dihedral group $G:=D_n\leq \operatorname{\mathsf{Sym}}(n)$ for $n\in\mathbb{N}_{\geq 3}.$ Then

$$\mathsf{CC}(G) = \mathsf{ICC}(G) \sqcup \mathsf{LA}(G) = z_0^{K_G} \sqcup \mathsf{LA}(G) \cong K_G/\langle \delta \rangle \sqcup \mathsf{LA}(G).$$

Furthermore, for $k \in K_G$ and $z_f \in LA(G)$ we have $z_0^k \circ z_f = z_{kf}$.

(ii) Let $p \geq 3$ be prime and consider $G := \mathsf{AGL}(1,p) \leq \mathsf{Sym}(p)$. Then

$$|\mathsf{CC}(G)| = (p-1)^p \text{ and } |\mathsf{ICC}(G)| = \begin{cases} (p-1)^{p-1} & p=3\\ (p-1)^{p-1} + 2^{p-1} & p \ge 5 \end{cases}$$

(iii) Let $n \in \mathbb{N}_{\geq 2}$ consider $G := C_n \wr C_2 \leq \operatorname{Sym}(2n)$. Then

$$|CC(G)| = n^{2n}$$
 and $|ICC(G)| = 1 + 2^{2n-1}$.