Discrete (P)-closed groups acting on trees

Stephan Tornier (joint work with Marcus Chijoff)

May 10, 2024

Definition (Banks-Elder-Willis '13)

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$.

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$. The (P_k) -closure of H is

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$. The (P_k) -closure of H is

$$H^{(P_k)}:=\{g\in \operatorname{Aut}(T)\mid \forall v\in \mathit{VT}\ \exists h\in H:\ g|_{B(v,k)}=h_{B(v,k)}\}.$$

University of Western Australia

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$. The (P_k) -closure of H is

$$H^{(P_k)}:=\{g\in \operatorname{\mathsf{Aut}}(T)\mid \forall v\in VT\ \exists h\in H:\ g|_{B(v,k)}=h_{B(v,k)}\}.$$

We say that H is (P_k) -closed, or has Property (P_k) , if $H = H^{(P_k)}$.

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$. The (P_k) -closure of H is

$$H^{(P_k)} := \{ g \in Aut(T) \mid \forall v \in VT \ \exists h \in H : \ g|_{B(v,k)} = h_{B(v,k)} \}.$$

We say that H is (P_k) -closed, or has Property (P_k) , if $H = H^{(P_k)}$.

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$. The (P_k) -closure of H is

$$H^{(P_k)} := \{ g \in Aut(T) \mid \forall v \in VT \ \exists h \in H : \ g|_{B(v,k)} = h_{B(v,k)} \}.$$

We say that H is (P_k) -closed, or has Property (P_k) , if $H = H^{(P_k)}$.

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$. The (P_k) -closure of H is

$$H^{(P_k)} := \{ g \in Aut(T) \mid \forall v \in VT \ \exists h \in H : \ g|_{B(v,k)} = h_{B(v,k)} \}.$$

We say that H is (P_k) -closed, or has Property (P_k) , if $H = H^{(P_k)}$.

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$. The (P_k) -closure of H is

$$H^{(P_k)} := \{ g \in Aut(T) \mid \forall v \in VT \ \exists h \in H : \ g|_{B(v,k)} = h_{B(v,k)} \}.$$

We say that H is (P_k) -closed, or has Property (P_k) , if $H = H^{(P_k)}$.

- $(H^{(P_k)})^{(P_k)} = H^{(P_k)}$, i.e. $H^{(P_k)}$ is (P_k) -closed.

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$. The (P_k) -closure of H is

$$H^{(P_k)}:=\{g\in \operatorname{Aut}(T)\mid \forall v\in VT\ \exists h\in H:\ g|_{B(v,k)}=h_{B(v,k)}\}.$$

We say that H is (P_k) -closed, or has Property (P_k) , if $H = H^{(P_k)}$.

Three consequences:

- $(H^{(P_k)})^{(P_k)} = H^{(P_k)}$, i.e. $H^{(P_k)}$ is (P_k) -closed.

Idea

Classify all closed subgroups of $\operatorname{Aut}(T)$ by classifying all groups that can appear as $H^{(P_k)}$, i.e. all (P_k) -closed groups, and forming all intersections.

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ 臺 釣९○

Definition

10/05/2024

Classification results/plans

Definition

Let T be a tree and $G \leq \operatorname{Aut}(T)$. The local action of G at $v \in VT$ is the permutation group $G_v \curvearrowright \{\text{arcs originating at } v\}$.

1. Local transitivity

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P_1) -closed subgroups of $\operatorname{Aut}(T_d)$ that contain an edge inversion

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P_1) -closed subgroups of $Aut(T_d)$ that contain an edge inversion $\longrightarrow U(F)$

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P₁)-closed subgroups of Aut(T_d) that contain an edge inversion --→ U(F)
 - Smith '18: locally transitive, (P_1) -closed subgroups of $Aut(T_{m,n})$ preserving the bipartition

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P₁)-closed subgroups of Aut(T_d) that contain an edge inversion --→ U(F)
 - Smith '18: locally transitive, (P_1) -closed subgroups of $\operatorname{Aut}(T_{m,n})$ preserving the bipartition $\longrightarrow U(F_1, F_2)$

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P_1) -closed subgroups of $Aut(T_d)$ that contain an edge inversion $-- \rightarrow U(F)$
 - Smith '18: locally transitive, (P_1) -closed subgroups of $\operatorname{Aut}(T_{m,n})$ preserving the bipartition $\longrightarrow U(F_1, F_2)$
 - T. '18: locally transitive, (P_k) -closed subgroups of $\operatorname{Aut}(T_d)$ that contain an edge inversion

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P₁)-closed subgroups of Aut(T_d) that contain an edge inversion --→ U(F)
 - Smith '18: locally transitive, (P_1) -closed subgroups of $\operatorname{Aut}(T_{m,n})$ preserving the bipartition $\longrightarrow U(F_1, F_2)$
 - T. '18: locally transitive, (P_k) -closed subgroups of $\operatorname{Aut}(T_d)$ that contain an edge inversion of order 2

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P_1) -closed subgroups of $Aut(T_d)$ that contain an edge inversion $\longrightarrow U(F)$
 - Smith '18: locally transitive, (P_1) -closed subgroups of $\operatorname{Aut}(T_{m,n})$ preserving the bipartition $\longrightarrow U(F_1, F_2)$
 - T. '18: locally transitive, (P_k) -closed subgroups of $\operatorname{Aut}(T_d)$ that contain an edge inversion of order $2 \longrightarrow U_k(F)$

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P_1) -closed subgroups of $Aut(T_d)$ that contain an edge inversion $-- \rightarrow U(F)$
 - Smith '18: locally transitive, (P_1) -closed subgroups of Aut $(T_{m,n})$ preserving the bipartition $-\rightarrow U(F_1, F_2)$
 - T. '18: locally transitive, (P_k) -closed subgroups of $\operatorname{Aut}(T_d)$ that contain an edge inversion of order $2 \longrightarrow U_k(F)$
- 2. Boundary transitivity

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P₁)-closed subgroups of Aut(T_d) that contain an edge inversion --→ U(F)
 - Smith '18: locally transitive, (P_1) -closed subgroups of $\operatorname{Aut}(T_{m,n})$ preserving the bipartition $\longrightarrow U(F_1, F_2)$
 - T. '18: locally transitive, (P_k) -closed subgroups of $\operatorname{Aut}(T_d)$ that contain an edge inversion of order $2 \longrightarrow U_k(F)$
- 2. Boundary transitivity
 - Radu '15: boundary-2-transitive, locally at least alternating subgroups of Aut $(T_{m,n})$ $(m, n \ge 6)$

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P₁)-closed subgroups of Aut(T_d) that contain an edge inversion --→ U(F)
 - Smith '18: locally transitive, (P_1) -closed subgroups of $\operatorname{Aut}(T_{m,n})$ preserving the bipartition $\longrightarrow U(F_1, F_2)$
 - T. '18: locally transitive, (P_k) -closed subgroups of $\operatorname{Aut}(T_d)$ that contain an edge inversion of order $2 \longrightarrow U_k(F)$
- 2. Boundary transitivity
 - Radu '15: boundary-2-transitive, locally at least alternating subgroups of Aut $(T_{m,n})$ $(m, n \ge 6) \longrightarrow$ infinite families

Definition

Let T be a tree and $G \leq \operatorname{Aut}(T)$. The local action of G at $v \in VT$ is the permutation group $G_v \curvearrowright \{\text{arcs originating at } v\}$.

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P₁)-closed subgroups of Aut(T_d) that contain an edge inversion --→ U(F)
 - Smith '18: locally transitive, (P_1) -closed subgroups of $\operatorname{Aut}(T_{m,n})$ preserving the bipartition $\longrightarrow U(F_1, F_2)$
 - T. '18: locally transitive, (P_k) -closed subgroups of $\operatorname{Aut}(T_d)$ that contain an edge inversion of order $2 \longrightarrow U_k(F)$
- 2. Boundary transitivity
 - Radu '15: boundary-2-transitive, locally at least alternating subgroups of Aut $(T_{m,n})$ $(m, n \ge 6) \longrightarrow$ infinite families
 - Reid '23: towards weakening the alternating assumption above

200

3. Vertex/arc-transitivity

- 3. Vertex/arc-transitivity
 - vertex-transitivity: descending intersection of (P_k) -closed groups

- 3. Vertex/arc-transitivity
 - vertex-transitivity: descending intersection of (P_k) -closed groups
 - (s-)arc-transitivity: lots of work, especially in the context of discrete groups / Weiss conjecture

10/05/2024

- 3. Vertex/arc-transitivity
 - vertex-transitivity: descending intersection of (P_k) -closed groups
 - (s-)arc-transitivity: lots of work, especially in the context of discrete groups / Weiss conjecture
- 4. No transitivity assumption

- 3. Vertex/arc-transitivity
 - ullet vertex-transitivity: descending intersection of (P_k) -closed groups
 - (s-)arc-transitivity: lots of work, especially in the context of discrete groups / Weiss conjecture
- 4. No transitivity assumption
 - Reid-Smith '20: (P_1) -closed subgroups of Aut(T) for any tree T (huge milestone!)

- 3. Vertex/arc-transitivity
 - ullet vertex-transitivity: descending intersection of (P_k) -closed groups
 - (s-)arc-transitivity: lots of work, especially in the context of discrete groups / Weiss conjecture
- 4. No transitivity assumption
 - Reid-Smith '20: (P_1) -closed subgroups of Aut(T) for any tree T (huge milestone!)
 - Lehner-Lindorfer-Möller-Woess: (P_k) -closed groups, work in progress

- 3. Vertex/arc-transitivity
 - ullet vertex-transitivity: descending intersection of (P_k) -closed groups
 - (s-)arc-transitivity: lots of work, especially in the context of discrete groups / Weiss conjecture
- 4. No transitivity assumption
 - Reid-Smith '20: (P_1) -closed subgroups of Aut(T) for any tree T (huge milestone!)
 - Lehner–Lindorfer–Möller–Woess: (P_k) -closed groups, work in progress

Theorem (Reid-Smith '20)

$$\left\{\begin{array}{c} \textit{Pairs}\left(\textit{G},\textit{T}\right)\\ \textit{G} \leq \mathsf{Aut}(\textit{T}) \;\;\textit{is}\;\;(\textit{P}_1)\textit{-closed} \end{array}\right\}/\cong \;\; \stackrel{\textit{1:1}}{\longleftrightarrow} \;\; \left\{\begin{array}{c} \textit{local action}\\ \textit{diagrams} \end{array}\right\}/\cong$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□
9
0

Definition

A local action diagram Δ is a triple $(\Gamma, (X_a)_{a \in A\Gamma}, (G(v))_{v \in V\Gamma})$ consisting of

Definition

A local action diagram Δ is a triple $(\Gamma, (X_a)_{a \in A\Gamma}, (G(v))_{v \in V\Gamma})$ consisting of

lacktriangle a connected graph Γ ,

Definition

A local action diagram Δ is a triple $(\Gamma, (X_a)_{a \in A\Gamma}, (G(v))_{v \in V\Gamma})$ consisting of

- lacktriangle a connected graph Γ ,
- ② pairwise disjoint, non-empty sets X_a ($a \in A\Gamma$), and

Definition

A local action diagram Δ is a triple $(\Gamma, (X_a)_{a \in A\Gamma}, (G(v))_{v \in V\Gamma})$ consisting of

- lacktriangle a connected graph Γ ,
- $oldsymbol{\circ}$ pairwise disjoint, non-empty sets X_a $(a \in A\Gamma)$, and
- **3** closed subgroups $G(v) \leq \operatorname{Sym}(X_v)$ $(v \in V\Gamma)$, where $X_v := \bigsqcup_{a \in o^{-1}(v)} X_a$, such that the sets X_a $(a \in o^{-1}(v))$ are precisely the orbits of G(v).

Definition

A local action diagram Δ is a triple $(\Gamma, (X_a)_{a \in A\Gamma}, (G(v))_{v \in V\Gamma})$ consisting of

- a connected graph Γ,
- ② pairwise disjoint, non-empty sets X_a ($a \in A\Gamma$), and
- closed subgroups G(v) ≤ Sym (X_v) (v ∈ VΓ), where $X_v := \bigsqcup_{a ∈ o^{-1}(v)} X_a$, such that the sets X_a $(a ∈ o^{-1}(v))$ are precisely the orbits of G(v).

Call the X_a colour sets, its elements colours, and the G(v) local actions.

Definition

A local action diagram Δ is a triple $(\Gamma, (X_a)_{a \in A\Gamma}, (G(v))_{v \in V\Gamma})$ consisting of

- lacktriangledown a connected graph Γ ,
- ② pairwise disjoint, non-empty sets X_a ($a \in A\Gamma$), and
- **③** closed subgroups $G(v) \le \operatorname{Sym}(X_v)$ ($v \in V\Gamma$), where $X_v := \bigsqcup_{a \in o^{-1}(v)} X_a$, such that the sets X_a ($a \in o^{-1}(v)$) are precisely the orbits of G(v).

Call the X_a colour sets, its elements colours, and the G(v) local actions.

10/05/2024

Definition

A local action diagram Δ is a triple $(\Gamma, (X_a)_{a \in A\Gamma}, (G(v))_{v \in V\Gamma})$ consisting of

- a connected graph Γ,
- ② pairwise disjoint, non-empty sets X_a ($a \in A\Gamma$), and
- **⊙** closed subgroups $G(v) \le \operatorname{Sym}(X_v)$ ($v \in V\Gamma$), where $X_v := \bigsqcup_{a \in o^{-1}(v)} X_a$, such that the sets X_a ($a \in o^{-1}(v)$) are precisely the orbits of G(v).

Call the X_a colour sets, its elements colours, and the G(v) local actions.

Poster(s)

• {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow}$ {strongly confluent partial orientations of Δ }

• {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow} \{ strongly \ confluent \ partial \ orientations of Δ} "scopo"$

- {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow}$ {strongly confluent partial orientations of Δ } "scopo"
- Geometric density of $U(\Delta) \longleftrightarrow \nexists$ non-trivial scopos of Δ

- {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow}$ {strongly confluent partial orientations of Δ } "scopo"
- ullet Geometric density of $U(\Delta) \longleftrightarrow \nexists$ non-trivial scopos of Δ
- Simplicity of $U(\Delta) \longleftrightarrow$ Condition on Δ

- {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow}$ {strongly confluent partial orientations of Δ } "scopo"
- ullet Geometric density of $U(\Delta) \longleftrightarrow \nexists$ non-trivial scopos of Δ
- Simplicity of $U(\Delta) \longleftrightarrow$ Condition on Δ
- ullet Local compactness of $U(\Delta)\longleftrightarrow$ Condition on Δ

- {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow}$ {strongly confluent partial orientations of Δ } "scopo"
- ullet Geometric density of $U(\Delta) \longleftrightarrow \nexists$ non-trivial scopos of Δ
- Simplicity of $U(\Delta) \longleftrightarrow$ Condition on Δ
- ullet Local compactness of $U(\Delta)\longleftrightarrow$ Condition on Δ
- ullet Compact generation of $U(\Delta)\longleftrightarrow$ Condition on Δ

- {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow}$ {strongly confluent partial orientations of Δ } "scopo"
- ullet Geometric density of $U(\Delta) \longleftrightarrow \nexists$ non-trivial scopos of Δ
- Simplicity of $U(\Delta) \longleftrightarrow$ Condition on Δ
- ullet Local compactness of $U(\Delta)\longleftrightarrow$ Condition on Δ
- ullet Compact generation of $U(\Delta)\longleftrightarrow$ Condition on Δ
- Action type of $U(\Delta) \longleftrightarrow \mathsf{Condition}$ on Δ

- {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow}$ {strongly confluent partial orientations of Δ } "scopo"
- ullet Geometric density of $U(\Delta) \longleftrightarrow \nexists$ non-trivial scopos of Δ
- Simplicity of $U(\Delta) \longleftrightarrow$ Condition on Δ
- ullet Local compactness of $U(\Delta)\longleftrightarrow$ Condition on Δ
- ullet Compact generation of $U(\Delta)\longleftrightarrow$ Condition on Δ
- Action type of $U(\Delta) \longleftrightarrow \mathsf{Condition}$ on Δ
- Discreteness of $U(\Delta) \longleftrightarrow$ Condition on Δ

10/05/2024

- {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow}$ {strongly confluent partial orientations of Δ } "scopo"
- ullet Geometric density of $U(\Delta) \longleftrightarrow \nexists$ non-trivial scopos of Δ
- Simplicity of $U(\Delta) \longleftrightarrow$ Condition on Δ
- ullet Local compactness of $U(\Delta)\longleftrightarrow$ Condition on Δ
- ullet Compact generation of $U(\Delta)\longleftrightarrow$ Condition on Δ
- Action type of $U(\Delta) \longleftrightarrow$ Condition on Δ
- Discreteness of $U(\Delta) \longleftrightarrow$ Condition on Δ

A GAP package on local action diagrams is work in progress. (joint with Marcus Chijoff)

Blackboard

Theorem

Let $\Delta \!=\! (\Gamma, (G(v)), (X_a))$ be a local action diagram. Then $U(\Delta)$ is of type

Theorem

Let $\Delta = (\Gamma, (G(v)), (X_a))$ be a local action diagram. Then $U(\Delta)$ is of type Fixed vertex if and only if Γ is a tree and Δ has a single vertex cotree.

Theorem

Let $\Delta = (\Gamma, (G(v)), (X_a))$ be a local action diagram. Then $U(\Delta)$ is of type Fixed vertex if and only if Γ is a tree and Δ has a single vertex cotree.

Inversion if and only if Δ has a cotree consisting of a vertex with a self-reverse loop $a \in A\Gamma$ so that $|X_a| = 1$.

Theorem

Let $\Delta = (\Gamma, (G(v)), (X_a))$ be a local action diagram. Then $U(\Delta)$ is of type Fixed vertex if and only if Γ is a tree and Δ has a single vertex cotree.

Inversion if and only if Δ has a cotree consisting of a vertex with a self-reverse loop $a \in A\Gamma$ so that $|X_a| = 1$.

Lineal if and only if Δ has a cyclic cotree Γ' with $|X_a|=1$ for all $a\in A\Gamma'$.

Theorem

Let $\Delta = (\Gamma, (G(v)), (X_a))$ be a local action diagram. Then $U(\Delta)$ is of type

Fixed vertex if and only if Γ is a tree and Δ has a single vertex cotree.

Inversion if and only if Δ has a cotree consisting of a vertex with a self-reverse loop $a \in A\Gamma$ so that $|X_a| = 1$.

Lineal if and only if Δ has a cyclic cotree Γ' with $|X_a|=1$ for all $a\in A\Gamma'$.

Focal if and only if Δ has a cyclic cotree Γ' with a cyclic orientation $O \subseteq A\Gamma'$ so that $|X_a| = 1$ for all $a \in O$ but there is an $a \in A(\Gamma') \setminus O$ with $|X_a| \ge 2$.

Theorem

Let $\Delta = (\Gamma, (G(v)), (X_a))$ be a local action diagram. Then $U(\Delta)$ is of type

Fixed vertex if and only if Γ is a tree and Δ has a single vertex cotree.

Inversion if and only if Δ has a cotree consisting of a vertex with a self-reverse loop $a \in A\Gamma$ so that $|X_a| = 1$.

Lineal if and only if Δ has a cyclic cotree Γ' with $|X_a|=1$ for all $a\in A\Gamma'$.

Focal if and only if Δ has a cyclic cotree Γ' with a cyclic orientation $O \subseteq A\Gamma'$ so that $|X_a| = 1$ for all $a \in O$ but there is an $a \in A(\Gamma') \setminus O$ with $|X_a| \ge 2$.

Horocyclic if and only if Γ is a tree and Δ has a unique horocyclic end.

Theorem

Let $\Delta = (\Gamma, (G(v)), (X_a))$ be a local action diagram. Then $U(\Delta)$ is of type

Fixed vertex if and only if Γ is a tree and Δ has a single vertex cotree.

Inversion if and only if Δ has a cotree consisting of a vertex with a self-reverse loop $a \in A\Gamma$ so that $|X_a| = 1$.

Lineal if and only if Δ has a cyclic cotree Γ' with $|X_a|=1$ for all $a\in A\Gamma'$.

Focal if and only if Δ has a cyclic cotree Γ' with a cyclic orientation $O \subseteq A\Gamma'$ so that $|X_a| = 1$ for all $a \in O$ but there is an $a \in A(\Gamma') \setminus O$ with $|X_a| \ge 2$.

Horocyclic if and only if Γ is a tree and Δ has a unique horocyclic end. General if and only if none of the above apply. Blackboard

Theorem (Chijoff-T. '24)

Let $\Delta = (\Gamma, (X_a), (G(v)))$ be a local action diagram. If $U(\Delta)$ is of type

Theorem (Chijoff-T. '24)

Let $\Delta = (\Gamma, (X_a), (G(v)))$ be a local action diagram. If $U(\Delta)$ is of type Fixed vertex then it is discrete if and only if G(v) is trivial for almost all $v \in V\Gamma$, and whenever X_v ($v \in V\Gamma$) is infinite then G(v) has a finite base and G(u) is trivial for every $u \in V\Gamma$ such that the arc $a \in o^{-1}(v)$ pointing towards u satisfies $|X_a| = \infty$.

Theorem (Chijoff-T. '24)

Let $\Delta = (\Gamma, (X_a), (G(v)))$ be a local action diagram. If $U(\Delta)$ is of type Fixed vertex then it is discrete if and only if G(v) is trivial for almost all $v \in V\Gamma$, and whenever X_v ($v \in V\Gamma$) is infinite then G(v) has a finite base and G(u) is trivial for every $u \in V\Gamma$ such that the arc $a \in o^{-1}(v)$ pointing towards u satisfies $|X_a| = \infty$.

Inversion then it is discrete if and only if ... (same as Fixed vertex).

Theorem (Chijoff-T. '24)

Let $\Delta = (\Gamma, (X_a), (G(v)))$ be a local action diagram. If $U(\Delta)$ is of type Fixed vertex then it is discrete if and only if G(v) is trivial for almost all $v \in V\Gamma$, and whenever X_v ($v \in V\Gamma$) is infinite then G(v) has a finite base and G(u) is trivial for every $u \in V\Gamma$ such that the arc $a \in o^{-1}(v)$ pointing towards u satisfies $|X_a| = \infty$.

Inversion then it is discrete if and only if ... (same as Fixed vertex). Lineal then it is discrete if and only if G(v) is trivial for all $v \in V\Gamma$.

Theorem (Chijoff-T. '24)

```
Let \Delta = (\Gamma, (X_a), (G(v))) be a local action diagram. If U(\Delta) is of type Fixed vertex then it is discrete if and only if G(v) is trivial for almost all v \in V\Gamma, and whenever X_v (v \in V\Gamma) is infinite then G(v) has a finite base and G(u) is trivial for every u \in V\Gamma such that the arc a \in o^{-1}(v) pointing towards u satisfies |X_a| = \infty.
```

Inversion then it is discrete if and only if ... (same as Fixed vertex). Lineal then it is discrete if and only if G(v) is trivial for all $v \in V\Gamma$. Focal then it is non-discrete.

Theorem (Chijoff-T. '24)

```
Let \Delta = (\Gamma, (X_a), (G(v))) be a local action diagram. If U(\Delta) is of type Fixed vertex then it is discrete if and only if G(v) is trivial for almost all v \in V\Gamma, and whenever X_v (v \in V\Gamma) is infinite then G(v) has a finite base and G(u) is trivial for every u \in V\Gamma such that the arc a \in o^{-1}(v) pointing towards u satisfies |X_a| = \infty.
```

Inversion then it is discrete if and only if ... (same as Fixed vertex).

Lineal then it is discrete if and only if G(v) is trivial for all $v \in V\Gamma$.

Focal then it is non-discrete.

Horocyclic then it is non-discrete.

Theorem (Chijoff-T. '24)

Let $\Delta = (\Gamma, (X_a), (G(v)))$ be a local action diagram. If $U(\Delta)$ is of type Fixed vertex then it is discrete if and only if G(v) is trivial for almost all $v \in V\Gamma$, and whenever X_v ($v \in V\Gamma$) is infinite then G(v) has a finite base and G(u) is trivial for every $u \in V\Gamma$ such that the arc $a \in o^{-1}(v)$ pointing towards u satisfies $|X_a| = \infty$.

Inversion then it is discrete if and only if ... (same as Fixed vertex).

Lineal then it is discrete if and only if G(v) is trivial for all $v \in V\Gamma$.

Focal then it is non-discrete.

Horocyclic then it is non-discrete.

General then it is discrete if and only if G(v) is semiregular for all $v \in V\Gamma'$ and trivial otherwise; here Γ' is the unique smallest cotree of Δ .

The End. Questions or comments?