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Introduction

Let T =(V ,E ) be a locally finite tree.

Consider the group Aut(T ).

Permutation topology with basis
{Aut(T )S | S ⊆ V finite}.

These are compact open subgroups.

The group Aut(T ) is locally compact
and totally disconnected.

A subgroup H ≤ Aut(T ) is discrete
if and only if HS ={id} for a finite S .
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(Pk)-closed groups

Definition (Banks–Elder–Willis ’13)

Let T be a tree, H ≤ Aut(T ), and k ∈ N0. The (Pk)-closure of H is

H(Pk ) := {g ∈ Aut(T ) | ∀v ∈ VT ∃h ∈ H : g |B(v ,k) = hB(v ,k)}.

We say that H is (Pk)-closed, or has Property (Pk), if H = H(Pk ).

Three consequences:

1 H(P0) ≥ H(P1) ≥ H(P2) ≥ · · · ≥ H(Pk ) ≥ · · · ≥ H ≥ H.

2
⋂

k∈N0
H(Pk ) = H.

3
(
H(Pk )

)(Pk ) = H(Pk ), i.e. H(Pk ) is (Pk)-closed.

Idea

Classify all closed subgroups of Aut(T ) by classifying all groups that can
appear as H(Pk ), i.e. all (Pk)-closed groups, and forming all intersections.

Stephan Tornier Groups acting on trees 4/15
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We say that H is (Pk)-closed, or has Property (Pk), if H = H(Pk ).

Three consequences:

1 H(P0) ≥ H(P1) ≥ H(P2) ≥ · · · ≥ H(Pk ) ≥ · · · ≥ H ≥ H.

2
⋂

k∈N0
H(Pk ) = H.

3
(
H(Pk )

)(Pk ) = H(Pk ), i.e. H(Pk ) is (Pk)-closed.

Idea

Classify all closed subgroups of Aut(T ) by classifying all groups that can
appear as H(Pk ), i.e. all (Pk)-closed groups, and forming all intersections.
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Classification results/plans

Definition

Let T be a tree and G ≤ Aut(T ). The local action of G at v ∈ VT is the
permutation group Gv ↷ {arcs originating at v}.

1. Local transitivity

Burger–Mozes ’00: locally transitive, (P1)-closed subgroups of
Aut(Td) that contain an edge inversion 99K U(F ) = U1(F )

Smith ’18: locally transitive, (P1)-closed subgroups of Aut(Tm,n)
preserving the bipartition 99K U(F1,F2)

T. ’18: locally transitive, (Pk)-closed subgroups of Aut(Td) that
contain an edge inversion of order 2 99K Uk(F )

2. Boundary transitivity

Radu ’15: boundary-2-transitive, locally at least alternating subgroups
of Aut(Tm,n) (m, n ≥ 6) 99K infinite families

Reid ’23: towards weakening the alternating assumption above
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Classification results/plans

3. Vertex/arc-transitivity

vertex-transitivity: descending intersection of (Pk)-closed groups

(s-)arc-transitivity: same strategy; lots of previous work, especially in
the context of discrete groups / Weiss conjecture

4. No transitivity assumption

Reid–Smith ’20: (P1)-closed subgroups of Aut(T ) for any tree T
(huge milestone!)

Lehner–Lindorfer–Möller–Woess: (Pk)-closed groups, work in progress

Theorem (Reid–Smith ’20){
Pairs (G ,T )

G ≤ Aut(T ) is (P1)-closed

}
/ ∼= 1:1←→

{
local action
diagrams

}
/ ∼=

Stephan Tornier Groups acting on trees 8/15



Computational Aspects of Thin Groups IMS NUS 14/06/2024

Classification results/plans

3. Vertex/arc-transitivity

vertex-transitivity: descending intersection of (Pk)-closed groups

(s-)arc-transitivity: same strategy; lots of previous work, especially in
the context of discrete groups / Weiss conjecture

4. No transitivity assumption

Reid–Smith ’20: (P1)-closed subgroups of Aut(T ) for any tree T
(huge milestone!)
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Lehner–Lindorfer–Möller–Woess: (Pk)-closed groups, work in progress

Theorem (Reid–Smith ’20){
Pairs (G ,T )

G ≤ Aut(T ) is (P1)-closed

}
/ ∼= 1:1←→

{
local action
diagrams

}
/ ∼=

Stephan Tornier Groups acting on trees 8/15



Computational Aspects of Thin Groups IMS NUS 14/06/2024

Classification results/plans

3. Vertex/arc-transitivity

vertex-transitivity: descending intersection of (Pk)-closed groups

(s-)arc-transitivity: same strategy; lots of previous work, especially in
the context of discrete groups / Weiss conjecture

4. No transitivity assumption

Reid–Smith ’20: (P1)-closed subgroups of Aut(T ) for any tree T
(huge milestone!)
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Definition

A local action diagram ∆ is a triple (Γ, (Xa)a∈AΓ, (G (v))v∈VΓ) consisting of

1 a connected graph Γ,

2 pairwise disjoint, non-empty sets Xa (a ∈ AΓ), and

3 closed subgroups G (v)≤Sym(Xv ) (v ∈VΓ), where Xv:=
⊔

a∈o−1(v) Xa,
such that the sets Xa (a ∈ o−1(v)) are precisely the orbits of G (v).

Call the Xa colour sets, its elements colours, and the G (v) local actions.
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Correspondence between properties of ∆ and U(∆)

{Fixed ends and invariant subtrees of U(∆)}
1:1←→ {strongly confluent partial orientations of ∆} ”scopo”

Geometric density of U(∆) ←→ ∄ non-trivial scopos of ∆

Simplicity of U(∆) ←→ Condition on ∆

Local compactness of U(∆) ←→ Condition on ∆

Compact generation of U(∆) ←→ Condition on ∆

Action type of U(∆) ←→ Condition on ∆

Discreteness of U(∆) ←→ Condition on ∆

A GAP package on local action diagrams is work in progress.
(joint with Marcus Chijoff)
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Six types of groups acting on trees

Fixes a
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Six types of groups acting on trees

Theorem

Let ∆=(Γ, (G (v)), (Xa)) be a local action diagram. Then U(∆) is of type

Fixed vertex if and only if Γ is a tree and ∆ has a single vertex cotree.

Inversion if and only if ∆ has a cotree consisting of a vertex with a
self-reverse loop a ∈ AΓ so that |Xa| = 1.

Lineal if and only if ∆ has a cyclic cotree Γ′ with |Xa| = 1 for all
a ∈ AΓ′.

Focal if and only if ∆ has a cyclic cotree Γ′ with a cyclic
orientation O ⊆ AΓ′ so that |Xa| = 1 for all a ∈ O but there
is an a ∈ A(Γ′)\O with |Xa| ≥ 2.

Horocyclic if and only if Γ is a tree and ∆ has a unique horocyclic end.

General if and only if none of the above apply.
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Discrete (P)-closed groups

Theorem (Chijoff-T. ’24)

Let ∆ = (Γ, (Xa), (G (v))) be a local action diagram. If U(∆) is of type

Fixed vertex then it is discrete if and only if G (v) is trivial for almost all
v ∈ VΓ, and whenever Xv (v ∈ VΓ) is infinite then G (v) has
a finite base and G (u) is trivial for every u ∈ VΓ such that
the arc a ∈ o−1(v) pointing towards u satisfies |Xa| =∞.

Inversion then it is discrete if and only if ... (same as Fixed vertex).

Lineal then it is discrete if and only if G (v) is trivial for all v ∈ VΓ.

Focal then it is non-discrete.

Horocyclic then it is non-discrete.

General then it is discrete if and only if G (v) is semiregular for all
v ∈ VΓ′ and trivial otherwise; here Γ′ is the unique smallest
cotree of ∆.
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The End.
Questions or comments?
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