Recent developments in groups acting on trees

Stephan Tornier (joint work with Marcus Chijoff)

June 14, 2024

Let T = (V, E) be a locally finite tree.

Let T = (V, E) be a locally finite tree. Consider the group Aut(T).

Let T = (V, E) be a locally finite tree.

Consider the group Aut(T).

Permutation topology with basis $\{Aut(T)_S \mid S \subseteq V \text{ finite}\}.$

Let T = (V, E) be a locally finite tree.

Consider the group Aut(T).

Permutation topology with basis $\{Aut(T)_S \mid S \subseteq V \text{ finite}\}.$

These are compact open subgroups.

Let T = (V, E) be a locally finite tree.

Consider the group Aut(T).

Permutation topology with basis $\{Aut(T)_S \mid S \subseteq V \text{ finite}\}.$

These are compact open subgroups.

The group Aut(T) is locally compact and totally disconnected.

IMS NUS

Introduction

Let T = (V, E) be a locally finite tree.

Consider the group Aut(T).

Permutation topology with basis $\{Aut(T)_S \mid S \subseteq V \text{ finite}\}.$

These are compact open subgroups.

The group Aut(T) is locally compact and totally disconnected.

A subgroup $H \le Aut(T)$ is discrete if and only if $H_S = \{id\}$ for a finite S.

Let G be a locally compact group.

Let G be a locally compact group.

G

Let G be a locally compact group.

Every connected locally compact group is an inverse limit of Lie groups.

$$1
ightharpoonup G^0
ightharpoonup G$$

Let G be a locally compact group.

Every connected locally compact group is an inverse limit of Lie groups. (Hilbert's 5th problem; Gleason, Yamabe, Montgomery-Zippin; 50's)

Let G be a locally compact group.

Every connected locally compact group is an inverse limit of Lie groups. (Hilbert's 5th problem; Gleason, Yamabe, Montgomery-Zippin; 50's)

Let G be a locally compact group.

Every connected locally compact group is an inverse limit of Lie groups. (Hilbert's 5th problem; Gleason, Yamabe, Montgomery-Zippin; 50's)

$$1 \rightarrowtail G^0 \rightarrowtail_{\mathsf{normal}}^{\mathsf{closed}} G \longrightarrow G/G^0 \longrightarrow 1$$

Let G be a locally compact group.

Every connected locally compact group is an inverse limit of Lie groups. (Hilbert's 5th problem; Gleason, Yamabe, Montgomery-Zippin; 50's)

Theorem (Abels '73, inspired by Cayley, Schreier)

Let H be a totally disconnected locally compact group.

$$1 \rightarrowtail G^0 \rightarrowtail_{\begin{array}{c} \text{closed} \\ \text{normal} \end{array}} G \longrightarrow G/G^0 \longrightarrow 3$$

Let G be a locally compact group.

Every connected locally compact group is an inverse limit of Lie groups. (Hilbert's 5th problem; Gleason, Yamabe, Montgomery-Zippin; 50's)

Theorem (Abels '73, inspired by Cayley, Schreier)

Let H be a totally disconnected locally compact group.

Then H acts vertex-transitively on a connected, locally finite graph Γ with compact open vertex stabilisers **if and only if** H is compactly generated.

$$1 \rightarrowtail G^0 \rightarrowtail_{\begin{array}{c} \text{closed} \\ \text{normal} \end{array}} G \longrightarrow G/G^0 \longrightarrow 1$$

Let G be a locally compact group.

Every connected locally compact group is an inverse limit of Lie groups. (Hilbert's 5th problem; Gleason, Yamabe, Montgomery-Zippin; 50's)

Theorem (Abels '73, inspired by Cayley, Schreier)

Let H be a totally disconnected locally compact group. Then H acts vertex-transitively on a connected, locally finite graph Γ with compact open vertex stabilisers **if and only if** H is compactly generated.

Fin. gen. discrete

$$1 > \hspace{1cm} \longrightarrow G^0 > \hspace{-1cm} \xrightarrow{\mathsf{closed}} G \longrightarrow \hspace{-1cm} \longrightarrow G/G^0 \longrightarrow \hspace{-1cm} \longrightarrow 1$$

IMS NUS

Why groups acting on trees?

Let G be a locally compact group.

Every connected locally compact group is an inverse limit of Lie groups. (Hilbert's 5th problem; Gleason, Yamabe, Montgomery-Zippin; 50's)

Theorem (Abels '73, inspired by Cayley, Schreier)

Let H be a totally disconnected locally compact group. Then H acts vertex-transitively on a connected, locally finite graph Γ with compact open vertex stabilisers **if and only if** H is compactly generated.

Fin. gen. discrete

Cayley graph;

$$1 \rightarrowtail G^0 \rightarrowtail_{\begin{array}{c} \text{closed} \\ \text{normal} \end{array}} G \longrightarrow G/G^0 \longrightarrow 1$$

Let G be a locally compact group.

Every connected locally compact group is an inverse limit of Lie groups. (Hilbert's 5th problem; Gleason, Yamabe, Montgomery-Zippin; 50's)

Theorem (Abels '73, inspired by Cayley, Schreier)

Let H be a totally disconnected locally compact group. Then H acts vertex-transitively on a connected, locally finite graph Γ with compact open vertex stabilisers **if and only if** H is compactly generated.

Fin. gen. discrete

Cayley graph; Profinite

$$1 \rightarrowtail G^0 \rightarrowtail_{\begin{array}{c} \text{closed} \\ \text{normal} \end{array}} G \longrightarrow G/G^0 \longrightarrow 1$$

Let G be a locally compact group.

Every connected locally compact group is an inverse limit of Lie groups. (Hilbert's 5th problem; Gleason, Yamabe, Montgomery-Zippin; 50's)

Theorem (Abels '73, inspired by Cayley, Schreier)

Let H be a totally disconnected locally compact group. Then H acts vertex-transitively on a connected, locally finite graph Γ with compact open vertex stabilisers **if and only if** H is compactly generated.

Fin. gen. discrete

Cayley graph; Profinite

•;

$$1 \rightarrowtail G^0 \rightarrowtail_{\begin{array}{c} \text{closed} \\ \text{normal} \end{array}} G \longrightarrow G/G^0 \longrightarrow 1$$

Let G be a locally compact group.

Every connected locally compact group is an inverse limit of Lie groups. (Hilbert's 5th problem; Gleason, Yamabe, Montgomery-Zippin; 50's)

Theorem (Abels '73, inspired by Cayley, Schreier)

Let H be a totally disconnected locally compact group.

Then H acts vertex-transitively on a connected, locally finite graph Γ with compact open vertex stabilisers **if and only if** H is compactly generated.

Fin. gen. discrete \curvearrowright Cayley graph; Profinite $\curvearrowright \bullet$; Aut (T_3)

$$1 \rightarrowtail G^0 \not\stackrel{\mathsf{closed}}{\longleftarrow} G \xrightarrow{\mathsf{normal}} G \xrightarrow{\hspace*{1cm}} G/G^0 \xrightarrow{\hspace*{1cm}} 1$$

Let G be a locally compact group.

Every connected locally compact group is an inverse limit of Lie groups. (Hilbert's 5th problem; Gleason, Yamabe, Montgomery-Zippin; 50's)

Theorem (Abels '73, inspired by Cayley, Schreier)

Let H be a totally disconnected locally compact group.

Then H acts vertex-transitively on a connected, locally finite graph Γ with compact open vertex stabilisers **if and only if** H is compactly generated.

Fin. gen. discrete \curvearrowright Cayley graph; Profinite $\curvearrowright \bullet$; $\operatorname{Aut}(T_3) \curvearrowright T_3$.

$$1 \rightarrowtail G^0 \rightarrowtail_{\begin{array}{c} \text{closed} \\ \text{normal} \end{array}} G \longrightarrow G/G^0 \longrightarrow 1$$

Let G be a locally compact group such that G/G^0 is compactly generated. Every connected locally compact group is an inverse limit of Lie groups. (Hilbert's 5th problem; Gleason, Yamabe, Montgomery-Zippin; 50's)

Theorem (Abels '73, inspired by Cayley, Schreier)

Let H be a totally disconnected locally compact group. Then H acts vertex-transitively on a connected, locally finite graph Γ with compact open vertex stabilisers **if and only if** H is compactly generated.

Fin. gen. discrete \curvearrowright Cayley graph; Profinite $\curvearrowright \bullet$; $\operatorname{Aut}(T_3) \curvearrowright T_3$.

$$1 \rightarrowtail G^0 \rightarrowtail_{\begin{array}{c} \text{closed} \\ \text{normal} \end{array}} G \longrightarrow G/G^0 \longrightarrow 3$$

Let G be a locally compact group such that G/G^0 is compactly generated. Every connected locally compact group is an inverse limit of Lie groups. (Hilbert's 5th problem; Gleason, Yamabe, Montgomery-Zippin; 50's)

Theorem (Abels '73, inspired by Cayley, Schreier)

Let H be a totally disconnected locally compact group. Then H acts vertex-transitively on a connected, locally finite graph Γ with compact open vertex stabilisers **if and only if** H is compactly generated.

Fin. gen. discrete \curvearrowright Cayley graph; Profinite $\curvearrowright \bullet$; $\operatorname{Aut}(T_3) \curvearrowright T_3$.

$$1 \rightarrowtail G^0 \searrow \frac{\mathsf{closed}}{\mathsf{normal}} G \longrightarrow \mathcal{G}/G^0 \longrightarrow 1$$

$$Aut(\Gamma)$$

$$C \longrightarrow \mathcal{A} \mathsf{ut}(\Gamma)$$

Stephan Tornier

14/06/2024

Let G be a locally compact group such that G/G^0 is compactly generated.

Let G be a locally compact group such that G/G^0 is compactly generated.

Stephan Tornier

Let G be a locally compact group such that G/G^0 is compactly generated.

Let G be a locally compact group such that G/G^0 is compactly generated.

Stephan Tornier

Let G be a locally compact group such that G/G^0 is compactly generated.

Let G be a locally compact group such that G/G^0 is compactly generated.

Stephan Tornier

Groups acting on trees

Definition (Banks-Elder-Willis '13)

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$.

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$. The (P_k) -closure of H is

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$. The (P_k) -closure of H is

$$H^{(P_k)}:=\{g\in \operatorname{Aut}(T)\mid \forall v\in \mathit{VT}\ \exists h\in H:\ g|_{B(v,k)}=h_{B(v,k)}\}.$$

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$. The (P_k) -closure of H is

$$H^{(P_k)}:=\{g\in \operatorname{\mathsf{Aut}}(T)\mid orall v\in VT\ \exists h\in H:\ g|_{B(v,k)}=h_{B(v,k)}\}.$$

We say that H is (P_k) -closed, or has Property (P_k) , if $H = H^{(P_k)}$.

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$. The (P_k) -closure of H is

$$H^{(P_k)}:=\{g\in \operatorname{\mathsf{Aut}}(T)\mid \forall v\in VT\ \exists h\in H:\ g|_{B(v,k)}=h_{B(v,k)}\}.$$

We say that H is (P_k) -closed, or has Property (P_k) , if $H = H^{(P_k)}$.

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$. The (P_k) -closure of H is

$$H^{(P_k)}:=\{g\in \operatorname{Aut}(T)\mid \forall v\in \mathit{VT}\ \exists h\in H:\ g|_{B(v,k)}=h_{B(v,k)}\}.$$

We say that H is (P_k) -closed, or has Property (P_k) , if $H = H^{(P_k)}$.

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$. The (P_k) -closure of H is

$$H^{(P_k)}:=\{g\in \operatorname{Aut}(T)\mid \forall v\in \mathit{VT}\ \exists h\in H:\ g|_{B(v,k)}=h_{B(v,k)}\}.$$

We say that H is (P_k) -closed, or has Property (P_k) , if $H = H^{(P_k)}$.

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$. The (P_k) -closure of H is

$$H^{(P_k)}:=\{g\in \operatorname{Aut}(T)\mid \forall v\in \mathit{VT}\ \exists h\in H:\ g|_{B(v,k)}=h_{B(v,k)}\}.$$

We say that H is (P_k) -closed, or has Property (P_k) , if $H = H^{(P_k)}$.

- $(H^{(P_k)})^{(P_k)} = H^{(P_k)}$, i.e. $H^{(P_k)}$ is (P_k) -closed.

Definition (Banks-Elder-Willis '13)

Let T be a tree, $H \leq \operatorname{Aut}(T)$, and $k \in \mathbb{N}_0$. The (P_k) -closure of H is

$$H^{(P_k)}:=\{g\in \operatorname{Aut}(T)\mid \forall v\in \mathit{VT}\ \exists h\in H:\ g|_{B(v,k)}=h_{B(v,k)}\}.$$

We say that H is (P_k) -closed, or has Property (P_k) , if $H = H^{(P_k)}$.

Three consequences:

- $(H^{(P_k)})^{(P_k)} = H^{(P_k)}$, i.e. $H^{(P_k)}$ is (P_k) -closed.

Idea

Classify all closed subgroups of $\operatorname{Aut}(T)$ by classifying all groups that can appear as $H^{(P_k)}$, i.e. all (P_k) -closed groups, and forming all intersections.

◆□▶
 ◆□▶
 ◆□▶
 ◆□▶
 ◆□▶

Towards a classification of closed vertex-transitive groups

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

 T_d

 T_d

g

 T_d

Universal Groups

 T_d

 $B_{d,k}$

 T_d

 $B_{d,k}$

$$g \\ colour-preserving \\ b \mapsto x \\ colour-preserving \\ gx \mapsto b \\ colour-pres$$

 $B_{d,k}$

$$g$$

$$colour-preserving$$

$$b \mapsto x$$

$$\sigma_k(g,x)$$

$$b$$

$$colour-preserving$$

$$gx \mapsto b$$

$$gx \mapsto b$$

Definition

 $B_{d,k}$

 T_d

For $F \leq \operatorname{Aut}(B_{d,k})$

Stephan Tornier

 $B_{d,k}$

Definition

 $B_{d,k}$

 T_d

For $F \leq \operatorname{Aut}(B_{d,k})$, set $U_k(F) := \{g \in \operatorname{Aut}(T_d) \mid \forall x \in V(T_d) : \sigma_k(g,x) \in F\}$.

- ロト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q C

Stephan Tornier

Groups acting on trees

Definition

Definition

Let T be a tree and $G \leq \operatorname{Aut}(T)$. The local action of G at $v \in VT$ is the permutation group $G_v \curvearrowright \{\text{arcs originating at } v\}$.

1. Local transitivity

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P_1) -closed subgroups of $\operatorname{Aut}(T_d)$ that contain an edge inversion

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P_1) -closed subgroups of Aut (T_d) that contain an edge inversion $\longrightarrow U(F) = U_1(F)$

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P_1) -closed subgroups of $Aut(T_d)$ that contain an edge inversion $\longrightarrow U(F) = U_1(F)$
 - Smith '18: locally transitive, (P_1) -closed subgroups of $Aut(T_{m,n})$ preserving the bipartition

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P_1) -closed subgroups of $Aut(T_d)$ that contain an edge inversion $\longrightarrow U(F) = U_1(F)$
 - Smith '18: locally transitive, (P_1) -closed subgroups of Aut $(T_{m,n})$ preserving the bipartition $-\rightarrow U(F_1, F_2)$

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P_1) -closed subgroups of $Aut(T_d)$ that contain an edge inversion $\longrightarrow U(F) = U_1(F)$
 - Smith '18: locally transitive, (P_1) -closed subgroups of $\operatorname{Aut}(T_{m,n})$ preserving the bipartition $\longrightarrow U(F_1, F_2)$
 - T. '18: locally transitive, (P_k) -closed subgroups of $\operatorname{Aut}(T_d)$ that contain an edge inversion

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P_1) -closed subgroups of $Aut(T_d)$ that contain an edge inversion $\longrightarrow U(F) = U_1(F)$
 - Smith '18: locally transitive, (P_1) -closed subgroups of $\operatorname{Aut}(T_{m,n})$ preserving the bipartition $\longrightarrow U(F_1, F_2)$
 - T. '18: locally transitive, (P_k) -closed subgroups of Aut (T_d) that contain an edge inversion of order 2

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P_1) -closed subgroups of $Aut(T_d)$ that contain an edge inversion $\longrightarrow U(F) = U_1(F)$
 - Smith '18: locally transitive, (P_1) -closed subgroups of $\operatorname{Aut}(T_{m,n})$ preserving the bipartition $\longrightarrow U(F_1, F_2)$
 - T. '18: locally transitive, (P_k) -closed subgroups of Aut (T_d) that contain an edge inversion of order $2 \longrightarrow U_k(F)$

Definition

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P_1) -closed subgroups of $Aut(T_d)$ that contain an edge inversion $\longrightarrow U(F) = U_1(F)$
 - Smith '18: locally transitive, (P_1) -closed subgroups of $Aut(T_{m,n})$ preserving the bipartition $-\rightarrow U(F_1, F_2)$
 - T. '18: locally transitive, (P_k) -closed subgroups of $\operatorname{Aut}(T_d)$ that contain an edge inversion of order $2 \longrightarrow U_k(F)$
- 2. Boundary transitivity

Definition

Let T be a tree and $G \leq \operatorname{Aut}(T)$. The local action of G at $v \in VT$ is the permutation group $G_v \curvearrowright \{\text{arcs originating at } v\}$.

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P_1) -closed subgroups of Aut (T_d) that contain an edge inversion $-- \rightarrow U(F) = U_1(F)$
 - Smith '18: locally transitive, (P_1) -closed subgroups of $Aut(T_{m,n})$ preserving the bipartition $-\rightarrow U(F_1, F_2)$
 - T. '18: locally transitive, (P_k) -closed subgroups of Aut (T_d) that contain an edge inversion of order $2 \longrightarrow U_k(F)$
- 2. Boundary transitivity
 - Radu '15: boundary-2-transitive, locally at least alternating subgroups of Aut $(T_{m,n})$ $(m, n \ge 6)$

14/06/2024

Definition

Let T be a tree and $G \leq \operatorname{Aut}(T)$. The local action of G at $v \in VT$ is the permutation group $G_v \curvearrowright \{\text{arcs originating at } v\}$.

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P_1) -closed subgroups of $Aut(T_d)$ that contain an edge inversion --- $U(F) = U_1(F)$
 - Smith '18: locally transitive, (P_1) -closed subgroups of Aut $(T_{m,n})$ preserving the bipartition $-\rightarrow U(F_1, F_2)$
 - T. '18: locally transitive, (P_k) -closed subgroups of $\operatorname{Aut}(T_d)$ that contain an edge inversion of order $2 \longrightarrow U_k(F)$
- 2. Boundary transitivity
 - Radu '15: boundary-2-transitive, locally at least alternating subgroups of Aut $(T_{m,n})$ $(m, n \ge 6) \longrightarrow$ infinite families

14/06/2024

14/06/2024

Classification results/plans

Definition

Let T be a tree and $G \leq \operatorname{Aut}(T)$. The local action of G at $v \in VT$ is the permutation group $G_v \curvearrowright \{\text{arcs originating at } v\}$.

- 1. Local transitivity
 - Burger–Mozes '00: locally transitive, (P_1) -closed subgroups of $Aut(T_d)$ that contain an edge inversion --- $U(F) = U_1(F)$
 - Smith '18: locally transitive, (P_1) -closed subgroups of $\operatorname{Aut}(T_{m,n})$ preserving the bipartition $\longrightarrow U(F_1, F_2)$
 - T. '18: locally transitive, (P_k) -closed subgroups of $\operatorname{Aut}(T_d)$ that contain an edge inversion of order $2 \longrightarrow U_k(F)$
- 2. Boundary transitivity
 - Radu '15: boundary-2-transitive, locally at least alternating subgroups of Aut $(T_{m,n})$ $(m, n \ge 6) \longrightarrow$ infinite families
 - Reid '23: towards weakening the alternating assumption above

Stephan Tornier Groups acting on trees 7/15

3. Vertex/arc-transitivity

- 3. Vertex/arc-transitivity
 - vertex-transitivity: descending intersection of (P_k) -closed groups

- 3. Vertex/arc-transitivity
 - vertex-transitivity: descending intersection of (P_k) -closed groups
 - (s-)arc-transitivity: same strategy; lots of previous work, especially in the context of discrete groups / Weiss conjecture

- 3. Vertex/arc-transitivity
 - ullet vertex-transitivity: descending intersection of (P_k) -closed groups
 - (s-)arc-transitivity: same strategy; lots of previous work, especially in the context of discrete groups / Weiss conjecture
- 4. No transitivity assumption

- 3. Vertex/arc-transitivity
 - vertex-transitivity: descending intersection of (P_k) -closed groups
 - (s-)arc-transitivity: same strategy; lots of previous work, especially in the context of discrete groups / Weiss conjecture
- 4. No transitivity assumption
 - Reid-Smith '20: (P_1) -closed subgroups of Aut(T) for any tree T (huge milestone!)

- 3. Vertex/arc-transitivity
 - ullet vertex-transitivity: descending intersection of (P_k) -closed groups
 - (s-)arc-transitivity: same strategy; lots of previous work, especially in the context of discrete groups / Weiss conjecture
- 4. No transitivity assumption
 - Reid-Smith '20: (P_1) -closed subgroups of Aut(T) for any tree T (huge milestone!)
 - Lehner-Lindorfer-Möller-Woess: (P_k) -closed groups, work in progress

14/06/2024

Classification results/plans

- 3. Vertex/arc-transitivity
 - ullet vertex-transitivity: descending intersection of (P_k) -closed groups
 - (s-)arc-transitivity: same strategy; lots of previous work, especially in the context of discrete groups / Weiss conjecture
- 4. No transitivity assumption
 - Reid-Smith '20: (P_1) -closed subgroups of Aut(T) for any tree T (huge milestone!)
 - \bullet Lehner–Lindorfer–Möller–Woess: (P_k) -closed groups, work in progress

Theorem (Reid-Smith '20)

$$\left\{\begin{array}{c} \textit{Pairs}\left(\textit{G},\textit{T}\right)\\ \textit{G} \leq \mathsf{Aut}(\textit{T}) \;\;\textit{is}\;\;(\textit{P}_1)\textit{-closed} \end{array}\right\}/\cong \;\; \stackrel{\textit{1:1}}{\longleftrightarrow} \;\; \left\{\begin{array}{c} \textit{local action}\\ \textit{diagrams} \end{array}\right\}/\cong$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□
9
0

Definition

A local action diagram Δ is a triple $(\Gamma, (X_a)_{a \in A\Gamma}, (G(v))_{v \in V\Gamma})$ consisting of

Definition

A local action diagram Δ is a triple $(\Gamma,(X_a)_{a\in A\Gamma},(G(v))_{v\in V\Gamma})$ consisting of

a connected graph Γ,

A local action diagram Δ is a triple $(\Gamma, (X_a)_{a \in A\Gamma}, (G(v))_{v \in V\Gamma})$ consisting of

- lacktriangle a connected graph Γ ,
- ② pairwise disjoint, non-empty sets X_a ($a \in A\Gamma$), and

A local action diagram Δ is a triple $(\Gamma, (X_a)_{a \in A\Gamma}, (G(v))_{v \in V\Gamma})$ consisting of

- lacktriangle a connected graph Γ ,
- ② pairwise disjoint, non-empty sets X_a ($a \in A\Gamma$), and
- ② closed subgroups $G(v) \leq \operatorname{Sym}(X_v)$ $(v \in V\Gamma)$, where $X_v := \bigsqcup_{a \in o^{-1}(v)} X_a$, such that the sets X_a $(a \in o^{-1}(v))$ are precisely the orbits of G(v).

A local action diagram Δ is a triple $(\Gamma, (X_a)_{a \in A\Gamma}, (G(v))_{v \in V\Gamma})$ consisting of

- lacktriangle a connected graph Γ ,
- 2 pairwise disjoint, non-empty sets X_a ($a \in A\Gamma$), and
- ② closed subgroups $G(v) \le \operatorname{Sym}(X_v)$ ($v \in V\Gamma$), where $X_v := \bigsqcup_{a \in o^{-1}(v)} X_a$, such that the sets X_a ($a \in o^{-1}(v)$) are precisely the orbits of G(v).

Call the X_a colour sets, its elements colours, and the G(v) local actions.

A local action diagram Δ is a triple $(\Gamma, (X_a)_{a \in A\Gamma}, (G(v))_{v \in V\Gamma})$ consisting of

- lacktriangle a connected graph Γ ,
- ② pairwise disjoint, non-empty sets X_a ($a \in A\Gamma$), and
- **⊙** closed subgroups $G(v) \le \operatorname{Sym}(X_v)$ ($v \in V\Gamma$), where $X_v := \bigsqcup_{a \in o^{-1}(v)} X_a$, such that the sets X_a ($a \in o^{-1}(v)$) are precisely the orbits of G(v).

Call the X_a colour sets, its elements colours, and the G(v) local actions.

A local action diagram Δ is a triple $(\Gamma, (X_a)_{a \in A\Gamma}, (G(v))_{v \in V\Gamma})$ consisting of

- lacktriangle a connected graph Γ ,
- ② pairwise disjoint, non-empty sets X_a ($a \in A\Gamma$), and
- ② closed subgroups $G(v) \le \operatorname{Sym}(X_v)$ ($v \in V\Gamma$), where $X_v := \bigsqcup_{a \in o^{-1}(v)} X_a$, such that the sets X_a ($a \in o^{-1}(v)$) are precisely the orbits of G(v).

Call the X_a colour sets, its elements colours, and the G(v) local actions.

• {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow}$ {strongly confluent partial orientations of Δ }

• {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow} \{ strongly \ confluent \ partial \ orientations of Δ} "scopo"$

- {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow}$ {strongly confluent partial orientations of Δ } "scopo"
- Geometric density of $U(\Delta) \longleftrightarrow \nexists$ non-trivial scopos of Δ

- {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow}$ {strongly confluent partial orientations of Δ } "scopo"
- ullet Geometric density of $U(\Delta) \longleftrightarrow \nexists$ non-trivial scopos of Δ
- Simplicity of $U(\Delta) \longleftrightarrow$ Condition on Δ

- {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow}$ {strongly confluent partial orientations of Δ } "scopo"
- ullet Geometric density of $U(\Delta)\longleftrightarrow \nexists$ non-trivial scopos of Δ
- Simplicity of $U(\Delta) \longleftrightarrow$ Condition on Δ
- ullet Local compactness of $U(\Delta)\longleftrightarrow$ Condition on Δ

- {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow}$ {strongly confluent partial orientations of Δ } "scopo"
- ullet Geometric density of $U(\Delta)\longleftrightarrow \nexists$ non-trivial scopos of Δ
- Simplicity of $U(\Delta) \longleftrightarrow$ Condition on Δ
- ullet Local compactness of $U(\Delta)\longleftrightarrow$ Condition on Δ
- Compact generation of $U(\Delta) \longleftrightarrow$ Condition on Δ

- {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow}$ {strongly confluent partial orientations of Δ } "scopo"
- Geometric density of $U(\Delta) \longleftrightarrow \nexists$ non-trivial scopos of Δ
- Simplicity of $U(\Delta) \longleftrightarrow$ Condition on Δ
- ullet Local compactness of $U(\Delta)\longleftrightarrow$ Condition on Δ
- ullet Compact generation of $U(\Delta)\longleftrightarrow$ Condition on Δ
- Action type of $U(\Delta) \longleftrightarrow$ Condition on Δ

- {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow}$ {strongly confluent partial orientations of Δ } "scopo"
- Geometric density of $U(\Delta) \longleftrightarrow \nexists$ non-trivial scopos of Δ
- Simplicity of $U(\Delta) \longleftrightarrow$ Condition on Δ
- ullet Local compactness of $U(\Delta)\longleftrightarrow$ Condition on Δ
- ullet Compact generation of $U(\Delta)\longleftrightarrow$ Condition on Δ
- Action type of $U(\Delta) \longleftrightarrow \mathsf{Condition}$ on Δ
- Discreteness of $U(\Delta) \longleftrightarrow$ Condition on Δ

- {Fixed ends and invariant subtrees of $U(\Delta)$ } $\stackrel{1:1}{\longleftrightarrow}$ {strongly confluent partial orientations of Δ } "scopo"
- ullet Geometric density of $U(\Delta)\longleftrightarrow \nexists$ non-trivial scopos of Δ
- Simplicity of $U(\Delta) \longleftrightarrow$ Condition on Δ
- ullet Local compactness of $U(\Delta)\longleftrightarrow$ Condition on Δ
- ullet Compact generation of $U(\Delta)\longleftrightarrow$ Condition on Δ
- Action type of $U(\Delta) \longleftrightarrow \mathsf{Condition}$ on Δ
- ullet Discreteness of $U(\Delta)\longleftrightarrow$ Condition on Δ

A GAP package on local action diagrams is work in progress. (joint with Marcus Chijoff)

Stephan Tornier

$_{\mathrm{Type}}$	G	$\Delta(T,G)$
(Fixed Vertex)	$\operatorname{Aut}(T)_x$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(Inversion)	$\operatorname{Aut}(T)_{\{a,\overline{a}\}}$	$\{1\} \underbrace{C_2}_{\{1\}} \underbrace{C_2}_{\{1\}} \underbrace{C_2}_{\{2,3\}} C_$
(Lineal)	$\operatorname{Aut}(T)_{\omega,\omega'}$	$\{1\} \\ \{2\} \\ \{1\} \\ \{2\} \\ \{1\} \\ \{2\} $
(Horocyclic)	Н	$\{2,3\}$ $\{2,3$
(Focal)	$\operatorname{Aut}(T)_{\omega}$	$\{1\}$ $(2,3)$
$(\mathit{General})$	$\operatorname{Aut}(T)$	$S_3 = \{1,2,3\}$

Theorem

Let $\Delta = (\Gamma, (G(v)), (X_a))$ be a local action diagram. Then $U(\Delta)$ is of type

Theorem

Let $\Delta = (\Gamma, (G(v)), (X_a))$ be a local action diagram. Then $U(\Delta)$ is of type Fixed vertex if and only if Γ is a tree and Δ has a single vertex cotree.

Theorem

Let $\Delta = (\Gamma, (G(v)), (X_a))$ be a local action diagram. Then $U(\Delta)$ is of type Fixed vertex if and only if Γ is a tree and Δ has a single vertex cotree.

Inversion if and only if Δ has a cotree consisting of a vertex with a self-reverse loop $a \in A\Gamma$ so that $|X_a| = 1$.

Theorem

Let $\Delta = (\Gamma, (G(v)), (X_a))$ be a local action diagram. Then $U(\Delta)$ is of type Fixed vertex if and only if Γ is a tree and Δ has a single vertex cotree.

IMS NUS

Inversion if and only if Δ has a cotree consisting of a vertex with a self-reverse loop $a \in A\Gamma$ so that $|X_a| = 1$.

Lineal if and only if Δ has a cyclic cotree Γ' with $|X_a|=1$ for all $a\in A\Gamma'$.

Theorem

Let $\Delta = (\Gamma, (G(v)), (X_a))$ be a local action diagram. Then $U(\Delta)$ is of type

Fixed vertex if and only if Γ is a tree and Δ has a single vertex cotree.

Inversion if and only if Δ has a cotree consisting of a vertex with a self-reverse loop $a \in A\Gamma$ so that $|X_a| = 1$.

Lineal if and only if Δ has a cyclic cotree Γ' with $|X_a|=1$ for all $a\in A\Gamma'$.

Focal if and only if Δ has a cyclic cotree Γ' with a cyclic orientation $O \subseteq A\Gamma'$ so that $|X_a| = 1$ for all $a \in O$ but there is an $a \in A(\Gamma') \setminus O$ with $|X_a| \ge 2$.

Theorem

Let $\Delta = (\Gamma, (G(v)), (X_a))$ be a local action diagram. Then $U(\Delta)$ is of type

Fixed vertex if and only if Γ is a tree and Δ has a single vertex cotree.

Inversion if and only if Δ has a cotree consisting of a vertex with a self-reverse loop $a \in A\Gamma$ so that $|X_a| = 1$.

Lineal if and only if Δ has a cyclic cotree Γ' with $|X_a|=1$ for all $a\in A\Gamma'$.

Focal if and only if Δ has a cyclic cotree Γ' with a cyclic orientation $O \subseteq A\Gamma'$ so that $|X_a| = 1$ for all $a \in O$ but there is an $a \in A(\Gamma') \setminus O$ with $|X_a| \ge 2$.

Horocyclic if and only if Γ is a tree and Δ has a unique horocyclic end.

Theorem

Let $\Delta = (\Gamma, (G(v)), (X_a))$ be a local action diagram. Then $U(\Delta)$ is of type

Fixed vertex if and only if Γ is a tree and Δ has a single vertex cotree.

Inversion if and only if Δ has a cotree consisting of a vertex with a self-reverse loop $a \in A\Gamma$ so that $|X_a| = 1$.

Lineal if and only if Δ has a cyclic cotree Γ' with $|X_a|=1$ for all $a\in A\Gamma'$.

Focal if and only if Δ has a cyclic cotree Γ' with a cyclic orientation $O \subseteq A\Gamma'$ so that $|X_a| = 1$ for all $a \in O$ but there is an $a \in A(\Gamma') \setminus O$ with $|X_a| \ge 2$.

Horocyclic if and only if Γ is a tree and Δ has a unique horocyclic end. General if and only if none of the above apply.

13/15

Theorem (Chijoff-T. '24)

Let $\Delta = (\Gamma, (X_a), (G(v)))$ be a local action diagram. If $U(\Delta)$ is of type

14/06/2024

Discrete (P)-closed groups

Theorem (Chijoff-T. '24)

Let $\Delta = (\Gamma, (X_a), (G(v)))$ be a local action diagram. If $U(\Delta)$ is of type Fixed vertex then it is discrete if and only if G(v) is trivial for almost all $v \in V\Gamma$, and whenever X_v ($v \in V\Gamma$) is infinite then G(v) has a finite base and G(u) is trivial for every $u \in V\Gamma$ such that the arc $a \in o^{-1}(v)$ pointing towards u satisfies $|X_a| = \infty$.

Theorem (Chijoff-T. '24)

Let $\Delta = (\Gamma, (X_a), (G(v)))$ be a local action diagram. If $U(\Delta)$ is of type Fixed vertex then it is discrete if and only if G(v) is trivial for almost all $v \in V\Gamma$, and whenever X_v ($v \in V\Gamma$) is infinite then G(v) has a finite base and G(u) is trivial for every $u \in V\Gamma$ such that the arc $a \in o^{-1}(v)$ pointing towards u satisfies $|X_a| = \infty$.

Inversion then it is discrete if and only if ... (same as Fixed vertex).

Theorem (Chijoff-T. '24)

Let $\Delta = (\Gamma, (X_a), (G(v)))$ be a local action diagram. If $U(\Delta)$ is of type Fixed vertex then it is discrete if and only if G(v) is trivial for almost all $v \in V\Gamma$, and whenever X_v ($v \in V\Gamma$) is infinite then G(v) has a finite base and G(u) is trivial for every $u \in V\Gamma$ such that the arc $a \in o^{-1}(v)$ pointing towards u satisfies $|X_a| = \infty$.

Inversion then it is discrete if and only if ... (same as Fixed vertex). Lineal then it is discrete if and only if G(v) is trivial for all $v \in V\Gamma$.

Theorem (Chijoff-T. '24)

Let $\Delta = (\Gamma, (X_a), (G(v)))$ be a local action diagram. If $U(\Delta)$ is of type Fixed vertex then it is discrete if and only if G(v) is trivial for almost all $v \in V\Gamma$, and whenever X_v ($v \in V\Gamma$) is infinite then G(v) has a finite base and G(u) is trivial for every $u \in V\Gamma$ such that the arc $a \in o^{-1}(v)$ pointing towards u satisfies $|X_a| = \infty$.

Inversion then it is discrete if and only if ... (same as Fixed vertex).

Lineal then it is discrete if and only if G(v) is trivial for all $v \in V\Gamma$.

Focal then it is non-discrete.

Theorem (Chijoff-T. '24)

Let $\Delta = (\Gamma, (X_a), (G(v)))$ be a local action diagram. If $U(\Delta)$ is of type Fixed vertex then it is discrete if and only if G(v) is trivial for almost all $v \in V\Gamma$, and whenever X_v ($v \in V\Gamma$) is infinite then G(v) has a finite base and G(u) is trivial for every $u \in V\Gamma$ such that the arc $a \in o^{-1}(v)$ pointing towards u satisfies $|X_a| = \infty$.

Inversion then it is discrete if and only if ... (same as Fixed vertex).

Lineal then it is discrete if and only if G(v) is trivial for all $v \in V\Gamma$.

Focal then it is non-discrete.

Horocyclic then it is non-discrete.

Theorem (Chijoff-T. '24)

Let $\Delta = (\Gamma, (X_a), (G(v)))$ be a local action diagram. If $U(\Delta)$ is of type Fixed vertex then it is discrete if and only if G(v) is trivial for almost all $v \in V\Gamma$, and whenever X_v ($v \in V\Gamma$) is infinite then G(v) has a finite base and G(u) is trivial for every $u \in V\Gamma$ such that the arc $a \in o^{-1}(v)$ pointing towards u satisfies $|X_a| = \infty$.

Inversion then it is discrete if and only if ... (same as Fixed vertex).

Lineal then it is discrete if and only if G(v) is trivial for all $v \in V\Gamma$.

Focal then it is non-discrete.

Horocyclic then it is non-discrete.

General then it is discrete if and only if G(v) is semiregular for all $v \in V\Gamma'$ and trivial otherwise; here Γ' is the unique smallest cotree of Δ .

The End. Questions or comments?