
AN INTRODUCTION TO GROUPS ACTING ON TREES

STEPHAN TORNIER

Abstract. This document is an extended version of lecture notes for a three-
hour minicourse delivered by the author at the "Groups in the Midlands"
workshop in Lincoln, UK during the week June 17-20, 2025.

First, we motivate the study of groups acting on trees through the Cayley–
Abels graphs construction and the associated action map. Secondly, we organ-
ise groups acting on trees into six different types, and introduce independence
as well as transitivity properties. Finally, we introduce generalised universal
groups and identify them as those locally transitive groups acting on trees that
satisfy an independence property and contain an involutive edge inversion.

1. Cayley–Abels graphs

In the general theory of totally disconnected, locally compact (t.d.l.c.) groups,
groups acting on trees play an important role for theoretical and practical reasons.
The theoretical side is summarised by Figure 1. We elaborate on it below.

π1(Γ)
��

��

G̃/G◦

����

// Aut(Td)

G◦ // // G // // G/G◦ // Aut(Γ)

Figure 1. Groups acting on trees among locally compact groups.

Let G be a locally compact group. The connected component of the identity
in G is a closed normal subgroup, which is locally compact and connected. Such
groups are known to be inverse limits of Lie groups by the solution to Hilbert’s
fifth problem due to [Gle52], [MZ52] and [Yam53] in the 1950s. The quotient group
G/G◦ is locally compact and totally disconnected. This class of groups is less well
understood and has received much attention in recent years.

Example 1.1. Connected versus totally disconnected locally compact groups.
(i) Examples of connected locally compact groups include the real numbers

(R, +), the unit circle S1 = {z ∈ C | |z| = 1}, the group of invertible
matrices of positive determinant GL+(n,R) = {A ∈ Rn×n | det(A) > 0} and
the special linear group SL(n,R) = {A ∈ Rn×n | det(A) = 1} (n ∈ N).

(ii) Examples of totally disconnected locally compact groups include abstract
groups equipped with the discrete topology, profinite groups, the p-adic num-
bers (Qp, +), the general linear group GL(n,Qp) (n ∈ N), automorphism
groups of locally finite graphs and buildings, and Kac-Moody groups.
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We remark that the smallest class of second countable t.d.l.c. groups that con-
tains all discrete groups and profinite such groups, and is closed under group ex-
tensions as well as countable directed unions is known as the class of elementary
t.d.l.c. groups, after Wesolek [Wes15], in analogy to elementary amenable groups.

Example 1.2. Examples of the sequence G◦ // // G // // G/G◦ of Figure 1.

(i) Let G := GL(n,R) = {A ∈ Rn×n | det(A) ̸= 0}. Then G◦ = GL+(n,R) and
we have G/G◦ ∼= Z/2Z.

(ii) Let G := O(1, 1) = {A ∈ Rn×n | B1,1(Ax, Ay) = B1,1(x, y) ∀x, y ∈ R2},
where B1,1 is the bilinear form B1,1((x1, y1)T , (x2, y2)T ) := x1x2 − y1y2. The
group O(1, 1) preserves the two-sheeted hyperbola x2 − y2 = −1 and its
connected component G◦ = SO+(1, 1) is the subgroup of O(1, 1) consisting
of matrices of positive determinant that preserve each of the two sheets. One
can show that G/G◦ ∼= Z/2Z × Z /2Z.

(iii) The automorphism group G := Aut(Td) of the d-regular tree (d ∈ N≥3), car-
rying the permutation topology for its action on the vertex set V Td, is locally
compact and totally disconnected. In particular G◦ = {id} and G/G◦ ∼= G.

(iv) Let G := GL(n,R) × Aut(Td). Then G◦ = GL+(n,R) × {id} and we have
G/G◦ ∼= Z/2Z× Aut(Td). In general, G is a group extension of G◦ by G/G◦.

By a result of Abels [Abe74], compactly generated t.d.l.c. groups always admit a
nice action on a locally finite connected graph, generalising the action of a finitely
generated group on a Cayley graph. See also Krön–Möller [KM08], and the survey
articles by Lederle [Led22] and Wesolek [Wes18], which we follow closely.

Definition 1.3. Let G be a t.d.l.c. group. A Cayley–Abels graph for G is a
locally finite connected graph Γ on which G acts vertex-transitively with compact
open vertex stabilisers.

Note that due to the vertex-transitivity assumption a Cayley–Abels graph is
necessarily regular. The following three examples are immediate from the definition.

Example 1.4. Cayley–Abels graphs.
(i) Let G = ⟨S | R⟩ be a finitely generated group with the discrete topology.

Then the Cayley graph Γ := Cay(G, S) with vertex set V Γ := G and edge
set EΓ := {{g, gs} | g ∈ G, s ∈ S} satisfies Definition 1.3. It is locally finite
because S is finite and connected because G is generated by S. Moreover, the
group G acts vertex-transitively by left multiplication on V Γ = G, and all
vertex-stabilisers coincide with the trivial subgroup of G, which is compact
and open in the discrete topology.

(ii) Let G be a compact group. Then we may take Γ to consist of a single vertex,
which is fixed by G. Note that the kernel of this action is all of G, so all
profinite groups become trivial in this sense.

(iii) Let G := Aut(Td) for some d ∈ N. Then we may take Γ := Td.

We show that the existence of a Cayley–Abels graph implies compact generation.
The proof exhibits a finitely generated, vertex-transitive subgroup.

Proposition 1.5. Let G be a t.d.l.c. group, and let Γ be a Cayley–Abels graph
for G. Then G is compactly generated.

Proof. Let v ∈ V Γ. Then the stabiliser Gv is a compact open subgroup of G. It will
be a subset of the compact generating set we construct.

As Γ is locally finite, there are only finitely many neighbours {v1, . . . , vn} ⊆ V Γ of
v ∈ V Γ. By vertex-transitivity, there are elements g1, . . . , gn ∈ G such that giv = vi

(i ∈ {1, . . . , n}). We claim that G is generated by the compact set Gv ∪{g1, . . . , gn}.
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It suffices to prove that D := ⟨g1, . . . , gn⟩ acts vertex-transitively on Γ: if, given
g ∈ G, there is d ∈ D such that gv = dv then d−1g ∈ Gv and hence g ∈ DGv.

To see that D acts vertex-transitively, we argue by induction on k ∈ N that for
all w ∈ B(v, k) there is d ∈ D such that dv = w. Since Γ is connected, every vertex
of Γ lies in B(v, k) for some k ∈ N. By definition of D, the statement holds for
k = 1. Suppose that the statement holds for k ∈ N and let w ∈ V Γ be such that
d(v, w) = k + 1. Let (v, u1, u2, . . . , uk, w) be a geodesic from v to w, see Figure 2.

v u1
u2 uk−1

uk w

k k + 1

Figure 2. A geodesic connecting v to w.

Then u1 ∈ {v1, v2, . . . , vn}. Using the induction hypothesis, let d ∈ D be so that
duk = v. Then dw = vi for some i ∈ {1, . . . , n} and g−1

i dw = v, with g−1
i d ∈ D. □

Conversely, compact generation guarantees the existence of a Cayley–Abels graph.
Its vertices can be chosen to be the left cosets of any compact open subgroup.

Theorem 1.6. Let G be a compactly generated t.d.l.c. group. Then G admits a
Cayley–Abels graph Γ. Given any compact open subgroup U of G, we may choose
V Γ = G/U on which G acts by left multiplication.

First, using compact generation of G, we construct a finite set A ⊆ G that plays
the role of the finite generating set S in the context of classical Cayley graphs.

Lemma 1.7. Let G be a compactly generated t.d.l.c. group. Further, let U be a
compact open subgroup of G and X a compact generating set of G. Then

(i) there is a finite symmetric set A ⊆ G containing 1 ∈ G such that X ⊆ AU
and UAU = AU , and

(ii) for any finite symmetric set A ⊆ G which satisfies X ⊆ AU and UAU = AU ,
it is the case that G = ⟨A⟩U .

Proof. For part (i), note that {xU | x ∈ X} is an open cover of X in G, so there is a
finite symmetric set B containing 1 such that X ⊆ BU . On the other hand, the set
UBU , which contains UB is compact as well, and covered by {ubU | u ∈ U, b ∈ B}.
Hence there is a finite symmetric set A containing 1 such that UB ⊆ AU and
B ⊆ A ⊆ UB. As a consequence, UAU ⊆ UBU ⊆ AUU = AU .

For part (ii), note inductively that (UAU)n = AnU (n ∈ N). Since UAU contains
X and is symmetric it follows that

G = ⟨UAU⟩ =
⋃

n∈N
(UAU)n =

⋃
n∈N

AnU = ⟨A⟩U. □

Equipped with Lemma 1.7, we now turn to the proof of Theorem 1.6.

Proof. (Theorem 1.6). Let A be as in Lemma 1.7, so UAU = AU and G = ⟨A⟩U .
Set V Γ := G/U and consider the trivial coset U ∈ G/U . We define

EΓ := {{gU, gaU} | g ∈ G, a ∈ A\{1}}.

By definition of V Γ, the group G acts vertex-transitively by left multiplication.
The defintion of EΓ shows that this action is by automorphisms of Γ. Moreover, all
vertex stabilisers are conjugates of U , and hence compact open. It remains to show
that Γ is connected and locally finite.
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For connectivity, we use that G = ⟨A⟩U . Given g ∈ G, write g = a1 · · · anu. Then

U, a1U, a1a2U, . . . , a1 · · · anU = a1 . . . anuU

is a path in Γ connecting U and gU .
For local finiteness, it suffices to show that B(U, 1) = {aU | a ∈ A}: since G acts

vertex-transitively this implies that Γ is regular of degree |A|. Let {gU, gaU} ∈ EΓ,
and suppose that either gU = U or gaU = U .

If gU = U then g ∈ U . Hence gaU ∈ UAU = AU , and so we conclude that
gaU = a′U for some a′ ∈ A as desired.

If gaU = U then g = ua−1 for some u ∈ U . Therefore we have gU ∈ UAU = AU ,
considering that A is symmetric, Consequently, g = a′u′ for some a′ ∈ A and u′ ∈ U .
That is, gU = a′U as desired. □

Given a compactly generated t.d.l.c. group G and a Cayley–Abels graph Γ of G,
we now collect various useful properties of the action map G → Aut(Γ).

Proposition 1.8. Let G be a t.d.l.c. group and Γ be a Cayley–Abels graph of G.
Then the map φ : G → Aut(Γ) is continuous and closed. Moreover, ker(φ) ⊆ G is
compact and φ(G) is cocompact in Aut(Γ).

Proof. For continuity, consider a basic open set U of Aut(Γ), that is, a stabiliser of
a finite set of vertices and edges. Since G acts with compact open vertex stabilisers,
the preimage φ−1(U) is an intersection of finitely many open sets and hence open.

To see that φ is a closed map, consider a closed set A ⊆ G and let (ai)i∈N be a
sequence in A, so that (φ(ai))i∈N converges to an element h ∈ Aut(Γ). Fix v ∈ V Γ.
Then there is N ∈ N such that for all i, j ≥ N we have φ(a−1

i )φ(aj) ∈ Aut(Γ)v.
Hence a−1

i aj ∈ Gv for all i, j ≥ N . In particular, a−1
N aj ∈ Gv for all j ≥ N . Since

Gv is compact, we conclude that there is a convergent subsequence (a−1
N ajk

)k∈N of
(a−1

N aj)j∈N converging to some b ∈ Gv. Hence (ajk
)k∈N converges, to some a ∈ A.

Since φ is continuous we have φ(a) = h, and so φ is closed.
The kernel ker(φ) =

⋂
v∈V Γ Gv is compact as an intersection of compact sets

due to the fact that G acts with compact open vertex stabilisers.
Concerning the image, recall the proof of Proposition 1.5. Since φ(G) ⊆ Aut(Γ) is

vertex-transitive, we have Aut(Γ) = φ(G)·Aut(Γ)v. Given that Aut(Γ)v is compact,
so is the quotient space φ(G)\ Aut(Γ). □

Cayley–Abels graphs are of theoretical importance and motivate the study of
groups acting on graphs. For example, as a consequence of Theorems 1.6 and 1.8,
every non-compact, compactly generated simple t.d.l.c. group can be viewed as a
closed vertex-transtive subgroup of a locally finite regular connected graph: the
kernel of the represenation map is necessarily trivial.

However, Cayley–Abels graphs are difficult to construct and analyse explicitly
as the following two remarks illustrate.

Remark 1.9. Intricacies of Cayley–Abels graphs.
(i) We know that for d ∈ N, the regular tree Td is a Cayley–Abels graph for the

group Aut(Td). However, could there be a Cayley–Abels graph, not neces-
sarily a tree, of smaller degree? This question is surprisingly subtle and was
answered negatively in the research article [ÁLM23].

(ii) It is stated as a problem in [Led22, Problem 2.21] to give a good description
of a Cayley–Abels graph for Neretin’s group of tree almost automorphisms.

Finally, the action of a t.d.l.c. group G on a Cayley–Abels graph Γ lifts to an
action of a group G̃ on the universal cover of Γ, which is the regular tree of the same
degree. The group G̃ contains the fundamental group π1(Γ) as a discrete normal
subgroup and G ∼= G̃/π1(Γ). A good account of this is given by [Led22, Section 3].
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2. Independence and Transitivity Properties

This article is not self-contained in that it assumes basic terminology concerning
trees and groups acting on them, see for example [GGT18]. Group actions on trees
can be coarsely organised into six different types, according to invariant structures.

Proposition 2.1 ([Tit70], [RS20, Thm. 2.5]). Let G be a group acting on a tree T .
Then G belongs to exactly one of the following types: the group G either
(Fixed vertex ) fixes a (not necessarily unique) vertex,
(Inversion) preserves a unique edge and contains an inversion of that edge,
(Lineal) fixes exactly two ends and translates the line between them,
(Focal) fixes a unique end and contains a translation towards this end,
(Horocyclic) fixes a unique end but no vertices, and acts without translation, or
(General) acts with translation and does not fix any end.

Proposition 2.1 is summarised by the following decision tree of Figure 3.

Fixes a
vertex?

Fixed Vertex Preserves an edge?

Inversion
Fixes

an end?

Fixes more
than one end? General

Lineal
Contains

translations?

Focal Horocyclic

Yes No

Yes No

Yes No

Yes No

Yes No

Figure 3. Decision tree of Proposition 2.1.

Example 2.2. We describe prototypical examples of groups of each type in the
case of T = T3 as follows. Let v ∈ V T , e ∈ ET and ω, ω′ ∈ ∂T . Recall that Aut(T )ω

splits as a semidirect product Aut(T )ω
∼= Z ⋉ H, where H consists of all elliptic

elements in Aut(T )ω and Z is generated by a translation towards ω.

Fixed vertex Inversion Lineal Focal Horocyclic General
Aut(T )v Aut(T ){e,e} Aut(T )ω,ω′ Aut(T )ω H Aut(T )

Figure 4. Propotypical examples of groups acting on trees
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As a mnemonic for these types, it is helpful to draw the 3-regular tree in a way
that suggests the action type, see Figure 5. The term horocyclic stems from the
fact that such groups preserve the horocycles, sets of vertices that are equidistant
(relative to a base vertex) from the chosen end, indicated by dashed lines in Figure 5.

v e

ω ω′

Fixed vertex Inversion Lineal

ω ω

Focal Horocyclic General

Figure 5. Drawing the 3-regular tree to suggest the action type.

Note that when T is locally finite, groups of type (Fixed Vertex ) and (Inversion)
are necessarily compact in the permutation topology as they act with finite vertex
orbits. Vertex-transitive focal groups are also known as scale groups, see [Wil20].
They correspond both to self-replicating groups acting on rooted trees and elements
of t.d.l.c. groups with non-trivial scale.

With the goal of classifying (subclasses of) groups acting on trees in some form,
additional properties are typically assumed. This includes both independence and
transitivity properties, which we elaborate on below.

2.1. Independence Properties. Tits [Tit70] first introduced an independence
property named Property (P ) for groups acting on trees in order to prove the
simplicity of certain such groups.

This property was later generalised to Property (Pk), where k ∈ N0, by Banks–
Elder–Willis [BEW15]. For closed subgroups, Tits’ Property (P ) coincides with
Property (P1) and the original simplicity criterion is generalised.

In hindsight, the Properties (Pk) also serve as an organising principle for groups
acting on trees, which we elaborate on below. There are two essentially equivalent
descriptions of these properties. The easier-to-state version reads as follows.

Definition 2.3. Let T be a tree, H ≤Aut(T ), and k ∈N0. The (Pk)-closure of H is

H(Pk) := {g ∈ Aut(T ) | ∀v ∈ V T ∃h ∈ H : g|B(v,k) = h|B(v,k)}.

The group H has Property (Pk), or is (Pk)-closed, if H = H(Pk).

Note that the (P0)-closure of H ≤ Aut(T ) is the largest subgroup of Aut(T )
with the same vertex orbits as H. Section 3 introduces a large family of examples
of groups with Property (Pk) for a given k ∈ N0. For now, consider the following.
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Example 2.4.
(i) The group Aut(Td) satisfies Property (P0). Moreover, whenever H ≤ Aut(Td)

is vertex-transitive, then H(P0) = Aut(Td).
(ii) The group Aut(Td)+ is the largest subgroup of Aut(Td) which preserves the

natural bipartition of V Td and therefore satisfies Property (P0).
(iii) The examples of Figure 4 satisfy Property (P1). We have Aut(T )(P0)

ω =Aut(T )
and Aut(T )(P0)

ω,ω′ = Aut(T ){ω,ω′}. The other examples are even (P0)-closed.
(iv) Let l : ETd → Ω be a regular labelling of Td, that is, for every vertex

v ∈ V Td the map lv : {e ∈ ETd | o(e) = v} → Ω induced by l is a bijection,
and l(e) = l(e) for all e ∈ ETd. The local action of g ∈ Aut(Td) at a vertex
v ∈ V Td is the permutation σ1(g, v) := lgv ◦ g ◦ l−1

v ∈ Sym(Ω). Now consider
the group of automorphisms whose local action is constant:

D := {g ∈ Aut(Td) | ∃τ ∈ Sym(Ω) : ∀v ∈ V Td : σ1(g, v) = τ}.

Then D(P0) = D(P1) = Aut(Td) but D(P2) = D, so D satisfies Property (P2).
(v) The group PGL(2,Qp) acting on its Bruhat-Tits tree Tp+1 does not satisfy

Property (Pk) for any k ∈ N0, see [BEW15, Section 4.1].

Among other properties, the (Pk)-closures of a given group naturally form a
descending chain of overgroups converging to the group’s closure.

Proposition 2.5. Let T be a tree, H ≤ Aut(T ), and k, l ∈ N0. Then
(i) H(Pk) ≤ Aut(T ) is closed,
(ii) H(P0) ≥ H(P1) ≥ H(P2) ≥ · · · ≥ H(Pk) ≥ · · · ≥ H ≥ H,
(iii)

⋂
k∈N0

H(Pk) = H, and
(iv)

(
H(Pk))(Pl) = H(Pl), whenever l ≤ k. In particular, H(Pk) is (Pk)-closed.

Proof. To see that H(Pk) ≤ Aut(T ) is closed, let g ∈ Aut(T )\H(Pk). Then there
is some vertex v ∈ V T such that g does not coincide with any element of H on
B(v, k). Then the set g Aut(T )B(v,k) of automorphisms of T that coincide with g
on B(v, k) is an open set containing g and contained in the complement of H.

The inclusions H(P0) ≥ H(P1) ≥ H(P2) ≥ · · · ≥ H(Pk) ≥ · · · ≥ H are immediate
from the definition. The statements about H follow as H(Pk) is closed by part (i).

By part (ii), we have
⋂

k∈N0
H(Pk) ⊇ H. For the converse inclusion, suppose

g ∈
⋂

k∈N0
H(Pk). By definition, any of the basic open neighbourhoods g Aut(T )B(v,k)

(k ∈ N) of g in Aut(T ) contains an element h ∈ H. Hence the assertion.
Finally, we have H ≤ H(Pk) and therefore H(Pl) ≤

(
H(Pk))(Pl)

. The converse
inclusion follows from the definition as B(v, l) ⊆ B(v, k) for all v ∈ V T . □

By Proposition 2.5, a closed group H ≤ Aut(T ) can be recovered from the
sequence of its (Pk)-closures through intersection. Since (Pk)-closures are always
(Pk)-closed, a complete parametrisation of all (Pk)-closed groups would therefore
entail a description of all closed subgroups of Aut(T ). See Figure 6 for an illustration
of this in the case of vertex-transitive subgroups of Aut(T3). In milestone work,
Reid–Smith [RS20] parametrised all (P1)-closed groups, subsuming the Burger–
Mozes [BM00, Section 3.2] universal groups U1(F ) and his own [Smi17] bi-universal
groups. Moreover, Tornier [Tor23] described a subclass of all (Pk)-closed groups,
known as generalised universal groups Uk(F ), see Section 3. A more ambitious
description of all (Pk)-closed groups is being pursued by various researchers.

The second, essentially equivalent version of Property (Pk) resembles the original
definition of Tits more closely, and better motivates the term independence.

Let e = {v, w} be an edge of T and k ∈ N. We let ek := B(v, k) ∩ B(w, k) denote
the (k−1)-neighbourhood of e. Furthermore, let Tv and Tw denote the half-trees
defined by e containing v and w respectively, see Figure 7.
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(P0) Aut(T3)

(P1) U1({id}) Z ∗C2 U1(C2) Aut(T3)ω U1(A3) U1(S3)

(P2) U2(Γ(S3)) · · · U2 · · · U2(Φ(S3))

...

ends closed, vertex-transitive H =
⋂

k∈N H(Pk) ≤ Aut(T3)

Figure 6. Recovering closed groups acting on trees from (Pk)-closures.

Definition 2.6. Let T be a tree, H ≤ Aut(T ), and k ∈ N. The group H satisfies
Property (IPk) if for every edge e = {v, w} ∈ ET we have

Hek = Hek,Tw
· Hek,Tv

.

In words, the stabiliser of ek in H acts independently on the two half-trees defined
by the edge e when H has Property (IPk). It is related to Property (Pk) as follows.

v

e

w

Tv Tw

ek

Figure 7. Illustration of Property (IPk) in the case of k = 2.

Theorem 2.7. Let T be a tree, H ≤ Aut(T ) and k ∈ N.
(i) If H satisfies Property (IPk) then H(Pk) = H.
(ii) If H(Pk) = H then H satisfies Property (IPk).

In particular, for closed H ≤ Aut(T ), Property (Pk) and (IPk) are equivalent.

Proof. First, suppose that H satisfies Property (IPk). We prove by induction on
r ≥ k that H(Pr) = H(Pk). The induction base is immediate. For the induction
step, note that H(Pr) ≤ H(Pk) by definition. Now, let g ∈ H(Pk) and v ∈ V T . We
construct element h ∈ H such that g|B(v,r+1) = h|B(v,r+1). That is, g ∈ H(Pr+1).
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By the induction hypothesis, g ∈ H(Pr) and hence there is h′ ∈ H such that
g|B(v,r) = h′|B(v,r). Therefore, h′−1g ∈ H(Pr) = H(Pk) fixes B(v, r). Let v1, . . . , vm

be the vertices at distance r − k + 1 from v. For all i ∈ {1, . . . , m} there is ai ∈ H
such that ai|B(vi,k) = (h′−1g)|B(vi,k). In particular, ai fixes the set B(vi, k)∩B(v, r).
Let wi ∈ V T denote the vertex adjacent to vi that is closest to v. Then we have
B(vi, k)∩B(v, r) = B(vi, k)∩B(wi, k) = {vi, wi}k. Since H satisfies Property (IPk),
we may write ai = bici for some bi, ci ∈ H fixing {vi, wi}k and acting only on the
half-tree including vi and wi respectively. Now, the element b1 · · · bm fixes B(v, r)
and acts like h′−1g on B(vi, r) for all i ∈ {1, . . . , m}. Therefore, (h′b1 · · · bm)−1g ∈ H
fixes B(v, r + 1) and we may thus put h := h′b1 · · · bm.

Conversely, suppose that H(Pk) =H. We show that H(Pk) satisfies Property (IPk).
Let e = {v, w} ∈ ET . By definition, H

(Pk)
ek ⊇ H

(Pk)
ek,Tv

· H
(Pk)
ek,Tw

. Conversely, let
h ∈ H

(Pk)
ek . Define hv ∈ H

(Pk)
ek,Tw

by setting hv|B(x,k) = id for all x ∈ V Tw and
hv|B(x,k) = h for all x ∈ V Tv. Similarly, define hw ∈ H

(Pk)
ek,Tv

to only act on Tw.
Then h = hvhw and both hv and hw are elements of H(Pk). □

2.2. Transitivity Properties. This section contains a brief survey of classification
results concerning groups acting on trees with several transitivity properties.

2.2.1. Local transitivity. Transitivity assumptions of local nature are among the
most prevalent and allow for (finite) permutation group theory methods to be used.

Definition 2.8. Let T be a tree, G ≤ Aut(T ) and (X) a property of permutation
groups. The group G is locally (X) if for every vertex v ∈ V T the permutation
group induced by Gv on o−1(v) satisfies (X).

For example, property (X) in Definition 2.8 may represent (semi)regularity, tran-
sitivity, (semi)primitivity, 2-transitivity, or admitting a finite base.

• Burger–Mozes [BM00] characterised the locally transitive, (P1)-closed subgroups
of Aut(Td) (d ∈ N≥3) that contain an edge inversion as universal groups U1(F ).

• The author [Tor23] characterised the locally transitive, (Pk)-closed subgroups
(k ∈ N) of Aut(Td) (d ∈ N≥3) that contain an involutive edge inversion as
generalised universal groups, see Section 3.

• Smith [Smi17] characterised the locally transitive, (P1)-closed subgroups of
Aut(Tm,n) (m, n ∈ N≥2) preserving the bipartition as universal groups U(F1, F2).

2.2.2. Boundary Transitivity. Groups acting on trees that act transitively on the
boundary are much studied as well.

• Radu [Rad17] characterised boundary-2-transitive subgroups of Aut(Tm,n), for
m, n ∈ N≥6, that locally contain the alternating group through various families.

• Reid [Rei23] has laid ground work towards generalising Radu’s classification to
2-transitive local actions other than the alternating group.

• Semal [Sem24] classified the irreducible unitary representations of the groups
studied by Radu [Rad17].

2.2.3. Global transitivity. Figure 6 lays out a strategy to classify vertex-transitive
groups acting on trees. Groups acting transitively on edges, or more generally, paths
of length s ∈ N, so called s-arc-transitive groups, play a crucial role in the context
of discrete groups and the Weiss conjecture [Wei78].

2.2.4. No transitivity. In milestone work, generalising some of the classification
results for locally transitive groups mentioned in Section 2.2.1, Reid–Smith [RS20]
recently parametrised all (P1)-closed groups acting on (not necessarily locally finite)
trees using graph-based combinatorial structures known as local action diagrams.
It is several researchers’ ambition to achieve the same for (Pk)-closed groups.
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3. Generalised Universal Groups

In this section, we introduce a versatile class of groups acting on the regular tree
Td (d ∈ N≥3) that satisfy Property (Pk) for a given k ∈ N.

Let Ω be a set of cardinality d ∈ N≥3 and let Td denote the d-regular tree. A
regular labelling l of Td is a map l : ETd → Ω such that for every v ∈ V Td the
map lv : o−1(v) → Ω, e 7→ l(e) is a bijection, and l(e) = l(e) for all e ∈ E.

For every k ∈ N, fix a tree Bd,k that is isomorphic to a ball of radius k around a
vertex in Td. Let b denote its center and carry over the labelling of Td to Bd,k via the
chosen isomorphism. Then for every v ∈ V there is a unique, label-respecting iso-
morphism lk

v : B(v, k) → Bd,k. We define the k-local action σk(g, v) ∈ Aut(Bd,k)
of an automorphism g ∈ Aut(Td) at a vertex v ∈ V via

σk : Aut(Td) × V Td → Aut(Bd,k), (g, v) 7→ σk(g, x) := lk
gv ◦ g ◦ (lk

v)−1.

Definition 3.1. Let F ≤ Aut(Bd,k) and l be a labelling of Td. Define

U(l)
k (F ) := {g ∈ Aut(Td) | ∀x ∈ V Td : σk(g, x) ∈ F}.

In the case of k = 1, Definition 3.1 is due to Burger–Mozes [BM00, Section 3].
For k ≥ 2, it stems from [Tor23, Definition 4.1].

Figure 8 illustrates the definition of the maps σk, resembling transition maps in
differential geometry, and thereby the definition of the groups Uk(F ).

v gv
Td Td

Bd,k Bd,k

g

(lk
v)−1 lk

gv

σk(g, v)
b b

Figure 8. Illustration of the definition of Uk(F ) for (d, k) = (3, 2).

One can show that for different labellings of the tree Td, the corresponding
universal groups are conjugate in Aut(Td). We therefore often omit the reference
to an explicit labelling. The group Uk(F ) satisfies the following basic properties.
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Proposition 3.2. Let F ≤ Aut(Bd,k). The group Uk(F ) is
(i) closed in Aut(Td),
(ii) vertex-transitive,
(iii) compactly generated, and
(iv) satisfies Property (IPk) and (Pk).

Proof. As to (i), note that if g /∈ Uk(F ) then σk(g, v) /∈ F for some v ∈ V Td. In this
case, the open neighbourhood {h ∈ Aut(Td) | h|B(v,k) = g|B(v,k)} of g in Aut(Td)
is also contained in the complement of Uk(F ).

For (ii), let v, v′ ∈ V and let g ∈ Aut(Td) be the colour-preserving automorphism
of Td, with gv = v′. Then g ∈ Uk(F ) as σk(g, v) = id ∈ F for all v ∈ V .

The proof of part (iii) follows the same argument as Proposition 1.5.
For part (iv), it suffices to show either property due to Theorem 2.7 and part (i).

It is immediate from the definition that Uk(F ) satisfies Property (Pk). □

3.1. Compatibility. While the definition of Uk(F ) allows for k-local actions to be
in F ≤ Aut(Bd,k), compatibility issues between neighbouring vertices may prevent
some elements of F from occuring as a k-local action of an element of Uk(F ).

To make this precise, we say that Uk(F ) k-locally acts like F if the actions
Uk(F )v ↷ B(v, k) and F ↷ Bd,k are isomorphic for every v ∈ V via the label-
respecting isomorphism lk

v . Whereas this holds for k = 1 by [BM00, Section 3.2], it
need not be true for k ≥ 2. In the following, given a vertex v in a tree labelled by
Ω and a label ω ∈ Ω, we let vω denote the neighbour of v along the edge labelled ω.
Now, given F ≤ Aut(Bd,k), an element α ∈ F and ω ∈ Ω, put

CF (α, ω) := {αω ∈ F | σk−1(αω, b) = σk−1(α, bω) and σk−1(αω, bω) = σk−1(α, b)},

the set of all elements in F that are compatible with α in direction ω.

Proposition 3.3. Let d ∈ N≥3, k ∈ N and F ≤ Aut(Bd,k). The group Uk(F )
k-locally acts like F if and only if F satisfies

(C) ∀α ∈ F ∀ω ∈ Ω : CF (α, ω) ̸= ∅.

Proof. First, suppose that the group Uk(F ) does k-locally act like F . Let v ∈ V Td.
Then for every α ∈ F there is an element g ∈ Uk(F )v that satisfies σk(g, v) = α.
Now, let ω ∈ Ω and consider the neighbour vω of v. Note that

B(v, k) ∩ B(vω, k) = B(v, k − 1) ∪ B(vω, k − 1).
The restrictions of g to B(v, k) and B(vω, k) necessarily agree on the intersection
B(v, k) ∩ B(vω, k), see Figure 9. Since we have B(vω, k−1) = (lk

v)−1(B(bω, k−1))
and B(v, k−1) = (lk

vω
)−1(B(bω, k−1)) we conclude that σk(g, vω) ∈ CF (α, ω).

Conversely, suppose that CF (α, ω) is non-empty for all α ∈ F and ω ∈ Ω. Let
v, w ∈ V Td. An element g ∈ Uk(F ) that satisfies σk(g, v) = α and gv = w is readily
constructed: define g : B(v, k) → B(w, k) by setting gv := w and σk(g, v) := α.
Then, given elements αω ∈ CF (α, ω) for all ω ∈ Ω, there is a unique extension of g
to B(v, k + 1) such that σk(g, vω) = αω for all ω ∈ Ω. Proceed inductively. □

The following example illlustrates the problem when F does not satisfy (C).

Example 3.4. Let Ω := {1, 2, 3} and k := 2. Define α ∈ Aut(B3,2) to be the
element that swaps the leaves b12 and b13 of B3,2. Put F := ⟨α⟩ = {id, α}. Then
CF (α, 1) = ∅ and hence F does not satisfy (C).

However, one can show that it suffices to check (C) on generators, which results in
the following, see [Tor23, Proposition 4.10]. In Example 3.4, we have C(F ) = {id}.

Proposition 3.5. Let F ≤ Aut(Bd,k). Then F has a unique maximal subgroup
C(F ) that satisfies (C). We have C(C(F )) = C(F ) and Uk(F ) = Uk(C(F )).
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v

ω

vω

B(v, 2) ∩ B(vω, 2)

Figure 9. Two adjacent k-balls intersect in the union of two (k−1)-balls.

3.2. Examples. For clarity, we only consider the case k = 2. In certain situations,
this is actually sufficient, see [Tor23, Theorem 4.32]. In view of the compatibility
between elements of Aut(Bd,k) depending on their (k−1)-local actions, see Figure 9,
we identify Aut(Bd,k) with its image under the map

Aut(Bd,k) → Aut(Bd,k−1)⋉
∏

ω∈Ω
Aut(Bd,k−1), α 7→ (σk−1(α, b), (σk−1(α, bω))ω),

where Aut(Bd,k−1) acts on
∏

ω∈Ω Aut(Bd,k−1) by permuting the factors according
to its action on S(b, 1) ∼= Ω. That is, multiplication in Aut(Bd,k) is given by

(α, (αω)ω∈Ω) ◦ (β, (βω)ω∈Ω) = (αβ, (αβωβω)ω∈Ω).

In particular, we have

Aut(Bd,2) = {(a, (aω)ω∈Ω) | a ∈ Sym(Ω), ∀ω ∈ Ω : aω ∈ Sym(Ω) and aωω = aω}.

To define examples of local actions F ≤ Aut(Bd,2 that satisfy (C), consider the
map γ : Sym(Ω) → Aut(Bd,2), a 7→ (a, (a, . . . , a)). Given F ≤ Sym(Ω), the group

Γ(F ) := im(γ|F ) = {(a, (a, . . . , a)) | a ∈ F} ∼= F

is a subgroup of Aut(Bd,2) which is isomorphic to F and satisfies (C): all elements of
Γ(F ) are self-compatible in every direction, i.e., γ(a) ∈ CΓ(F )(γ(a), ω) for all a ∈ F
and ω ∈ Ω. Note that U2(Γ(F ))={α ∈ Aut(Td) | ∃a ∈ F : ∀x ∈ V : σ1(α, x) = a},
generalising Example 2.4 (iv). Next, consider the group

Φ(F ) := {(a, (aω)ω) | a ∈ F, ∀ω ∈ Ω : aω ∈ CF (a, ω)} ∼= F ⋉
∏

ω∈Ω
Fω.

It naturally satisfies condition (C) and U2(Φ(F )) = U1(F ) for every F ≤ Sym(Ω).
The following kind of 2-local action is related to the sign construction in [Rad17].

Let F ≤ Sym(Ω) and ρ : F ↠ A be a homomorphism to an abelian group A. Define

Π(F, ρ, {1}) :=
{

(a, (aω)ω) ∈ Φ(F )
∣∣∣ ∏

ω∈Ω
ρ(aω) = 1

}
, and

Π(F, ρ, {0, 1}) :=
{

(a, (aω)ω) ∈ Φ(F )
∣∣∣ ρ(a)

∏
ω∈Ω

ρ(aω) = 1
}

.

Proposition 3.6. Let F ≤ Sym(Ω) and let ρ : F ↠ A be a homomorphism to an
abelian group A. Further, let F̃ ∈ {Π(F, ρ, {1}), Π(F, ρ, {0, 1})}. If ρ(Fω) = A for
all ω ∈ Ω then πF̃ = F and F̃ satisfies (C).

Proof. As CF (a, ω)=aFω, and ρ(Fω)=A for all ω ∈ Ω, an element (a, (aω)ω)∈Φ(F )
can be turned into an element of F̃ by changing aω for a single, arbitrary ω ∈ Ω.
We conclude that πF̃ = F and that F̃ satisfies (C). □
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There are many more families of examples of local actions that satisfy (C), both
in the case k = 2 and for larger values of k. Figure 10 shows what is known about
locally transitive ones up to k = 4 in the case of T3. There is a comprehensive GAP
package which implements these families of examples, see [HT23] and [FTW25].

3.3. Universality. The groups Uk(F ) are universal in the sense of the following
maximality statement, which should be compared to [BM00, Proposition 3.2.2].

Theorem 3.7. Let H ≤ Aut(Td) be locally transitive and contain an involutive
inversion. Then there is a labelling l of Td such that

U(l)
1 (F (1)) ≥ U(l)

2 (F (2)) ≥ · · · ≥ U(l)
k (F (k)) ≥ · · · ≥ H ≥ U(l)

1 ({id})

where F (k) ≤ Aut(Bd,k) is action isomorphic to the k-local action of H.

Proof. First, we construct a labelling l of Td such that H ≥ U(l)
1 ({id}): Fix x ∈ V

and choose a bijection lx : E(x) → Ω. By the assumptions, there is an involutive
inversion ιω ∈ H of the edge (x, xω) ∈ E for every ω ∈ Ω. Using these inversions,
we define the announced labelling inductively: Set l|E(x) := lx and assume that l is
defined on E(x, n). For e ∈ E(x, n + 1)\E(x, n) put l(e) := l(ιω(e)) if xω is part of
the unique reduced path from x to o(e). Since the ιω (ω ∈ Ω) have order 2, we obtain
σ1(ιω, y) = id for all ω ∈ Ω and y ∈ V . Therefore, ⟨{ιω | ω ∈ Ω}⟩ = U(l)

1 ({id}) ≤ H.
Now, let h ∈ H and y ∈ V . Further, let (x, x1, . . . , xn, y) and (x, x′

1, . . . , x′
m, h(y))

be the unique reduced paths from x to y and h(y) respectively. Since U(l)
1 ({id}) ≤ H,

the group H contains the label-respecting inversion ιe of every edge e ∈ E. Hence

s := ι−1
(x′

1,x) · · · ι−1
(x′

m,x′
m−1)ι

−1
(h(y),x′

m) ◦ h ◦ ι(y,xn) · · · ι(x2,x1)ι(x1,x) ∈ H.

Also, s stabilizes x. The cocycle identity implies for every k ∈ N:

σk(h, y) = σk(ι(h(y),x′
m) · · · ι(x′

1,x) ◦ s ◦ ι−1
(x1,x) · · · ι−1

(y,xn), y) = σk(s, x) ∈ F (k).

where F (k) ≤ Aut(Bd,k) is defined by lk
x ◦ Hx|B(x,k) ◦ (lk

x)−1. □

The universality statement helps to characterise locally transitive generalised
universal groups precisely as those locally transitive subgroups of Aut(Td) that
contain an edge inversion of order 2 and satisfy Property (Pk) for some k ∈ N.

Theorem 3.8. Let H ≤ Aut(Td) be locally transitive and contain an involutive
inversion. Then H(Pk) = U(l)

k (F (k)) for some labelling l of Td and F (k) ≤ Aut(Bd,k).

Proof. Let l and F (k) ≤ Aut(Bd,k) be as in Theorem 3.7. Then H(Pk) =U(l)
k (F (k)):

Let g ∈ Uk(F (k)) and x ∈ V . Since U(l)
1 ({id}) ≤ H there is h′ ∈ U(l)

1 ({id}) ≤ H
with h′(x) = g(x), and since H is k-locally action isomorphic to F (k) there is h′′ ∈Hx

such that σk(h′′, x) = σk(g, x). Then h := h′h′′ ∈ H satisfies g|B(x,k) = h|B(x,k).
Conversely, let g ∈ H(Pk). Then all k-local actions of g stem from elements of H.

Given that H ≤ Uk(F (k)) by Theorem 3.7, we conclude that g ∈ Uk(F (k)). □

Corollary 3.9. Let H ≤ Aut(Td) be closed, locally transitive and contain an
involutive inversion. Then H = U(l)

k (F (k)) for some labelling l of Td and an action
F (k) ≤ Aut(Bd,k) if and only if H satisfies Property (Pk).

Proof. If H = U(l)
k (F (k)) then H satisfies Property (Pk) by Proposition 3.2. Con-

versely, if H satisfies Property (Pk) then H = H =H(Pk) by [BEW15, Theorem 5.4]
and the assertion follows from Theorem 3.8. □

Example 3.10. The group PGL(2,Qp) acting on its Bruhat-Tits tree Tp+1 does
not satisfy Property (Pk) for any k ∈ N. However, its (Pk)-closures are generalised
universal groups. For example, it can be shown that

PGL(2,Qp)(P1) = U1(PGL(2, p)) and PGL(2,Q2)(P2) = U2(Φ(S3)).
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Figure 10. Conjugacy class representatives of subgroups of Aut(B3,k) with (C) for k ∈ {0, 1, 2, 3, 4} and their relationship.
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