The Mathematics of Symmetry

Stephan Tornier

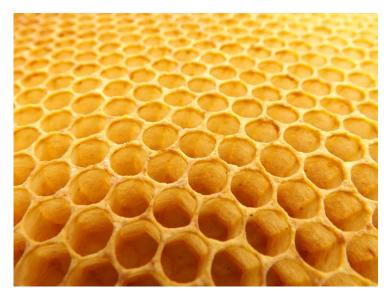
November 13, 2025

Symmetry

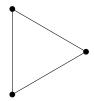
What comes to mind?

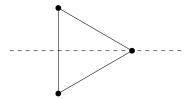
Beauty

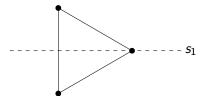
Efficiency

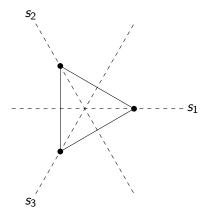


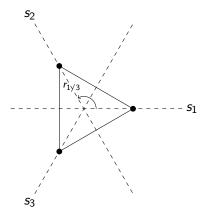
Cost-effectiveness

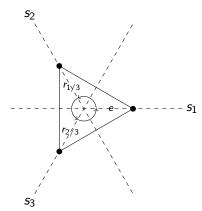


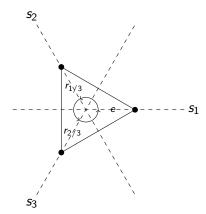




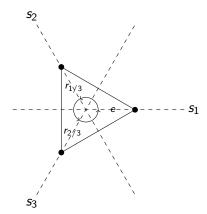




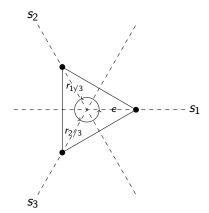




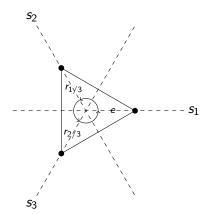
	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е						
<i>s</i> ₁						
<i>s</i> ₂						
s 3						
$r_{1/3}$						
$r_{1/3} = r_{2/3}$						



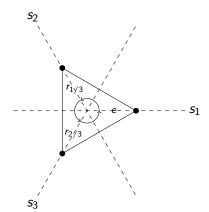
	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
e	e					
<i>s</i> ₁						
<i>s</i> ₂						
s 3						
$r_{1/3} = r_{2/3}$						



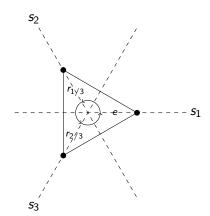
	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е	е	<i>s</i> ₁				
<i>s</i> ₁						
s ₂						
s 3						
$r_{1/3}$						
$r_{1/3} \over r_{2/3}$						



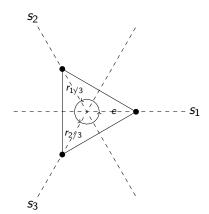
	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
е	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
s_1						
<i>s</i> ₂						
<i>S</i> 3						
$r_{1/3}$						
$r_{2/3}$						



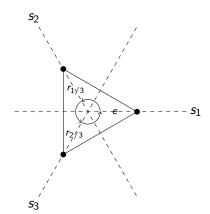
	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
e	e	<i>s</i> ₁	s ₂	<i>s</i> ₃	$r_{1/3}$	$r_{2/3}$
s_1	s_1					
<i>s</i> ₂	<i>s</i> ₂					
<i>5</i> 3	<i>5</i> 3					
$r_{1/3}$	$r_{1/3}$					
$r_{2/3}$	$r_{2/3}$					



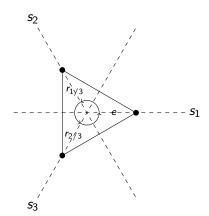
	e	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	$r_{1/3}$	$r_{2/3}$	
е	е	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$	
s_1	s_1	e					
<i>s</i> ₂	<i>s</i> ₂						
s 3	s 3						
$r_{1/3}$	$r_{1/3}$						
$r_{2/3}$	$r_{2/3}$						



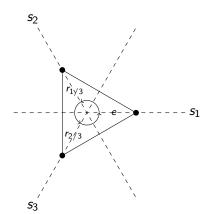
	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
e	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
s_1	s_1	e				
<i>s</i> ₂	<i>s</i> ₂		e			
s 3	s 3			e		
$r_{1/3}$	$r_{1/3}$					
$r_{2/3}$	$r_{2/3}$					



	e	s_1	s ₂	s 3	$r_{1/3}$	$r_{2/3}$	
е	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$	
s_1	s_1	e					
<i>s</i> ₂	<i>s</i> ₂		e				
s 3	s 3			e			
$r_{1/3}$	$r_{1/3}$				$r_{2/3}$		
$r_{2/3}$	$r_{2/3}$						

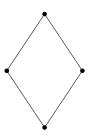


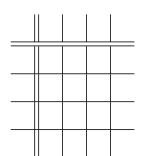
		e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
•	e	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
	s_1	s_1	e				
	<i>s</i> ₂	<i>s</i> ₂		e			
	<i>5</i> 3	5 3			e		
	$r_{1/3}$	$r_{1/3}$				$r_{2/3}$	e
	$r_{2/3}$	$r_{2/3}$				e	



	e	s_1	s ₂	s 3	$r_{1/3}$	$r_{2/3}$
e	e	<i>s</i> ₁	s ₂	s 3	$r_{1/3}$	r _{2/3}
s_1	s_1	e			•	•
<i>s</i> ₂	<i>s</i> ₂		e			
<i>5</i> 3	<i>5</i> 3			e		
$r_{1/3}$	$r_{1/3}$				$r_{2/3}$	е
$r_{2/3}$	$r_{2/3}$				e	$r_{1/3}$

Consider the diamond shape below. Find and give names to all its symmetries, and record their compositions in the table.





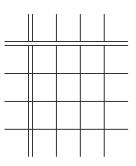
Complete the following table of addition of integers modulo 4.

+4	0	1	2	3
0				
1				
2				
3		0		

Consider the expression below.

$$a + b + c \times d$$

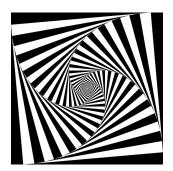
Choosing numbers for a, b, c and d, the expression takes a value. For example:

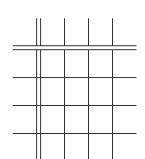


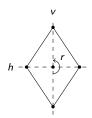
Find and give names to all rearrangements of the letters a, b, c, d that do not change the expression value for any choice of numbers a, b, c, d. Record their compositions in the table.

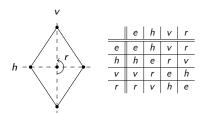
Note: By the example above, swapping b and d is no such rearrangement.

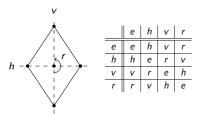
Consider the image below. Find and give names to all its symmetries, and record their compositions in the table.





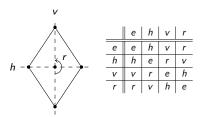






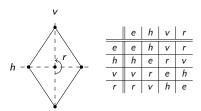
Addition

modulo 4



Addition 3

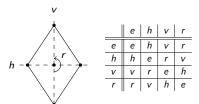
modulo 4



$$a + b + c \times d$$

Addition

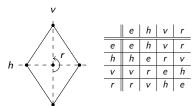
modulo 4



$$a + b + c \times a$$

	e	s	t	Ь
е	e	5	t	Ь
s	s	е	Ь	t
t	t	b	е	s
b	b	t	s	е

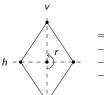
Addition modulo 4



$$a + b + c \times d$$

	e	5	t	b
е	e	5	t	Ь
s	s	е	b	t
t	t	b	e	S
b	b	t	s	е

Addition modulo 4



	e	h	v	r
e	e	h	V	r
h	h	е	r	V
V	V	r	е	h
r	r	V	h	e

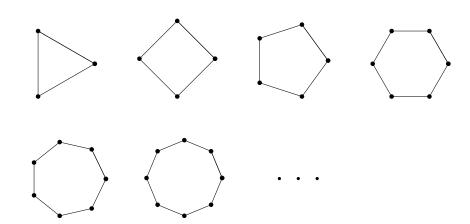
$$a + b + c \times d$$

Addition modulo 4

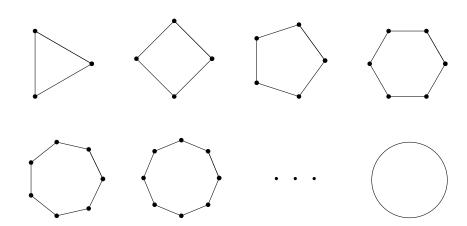
	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	n	1	2

	е	r _{1/4}	r _{2/4}	r _{3/4}
е	е	r _{1/4}	r _{2/4}	r _{3/4}
r _{1/4}	$r_{1/4}$	r _{2/4}	r _{3/4}	e
r _{2/4}	$r_{2/4}$	r _{3/4}	e	r _{1/4}
r _{3/4}	r _{3/4}	е	r _{1/4}	r _{2/4}

More symmetry

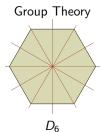


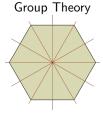
More symmetry



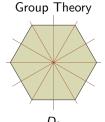
Group Theory

Group Theory

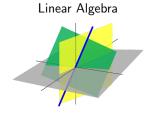




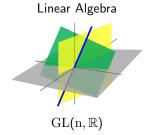
Linear Algebra



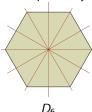
Young Mathematician Program





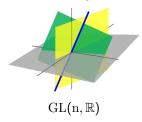


13/11/2025



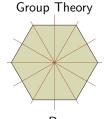
Linear Algebra

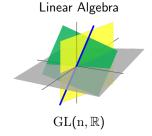
The University of Newcastle



Number Theory

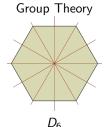
13/11/2025

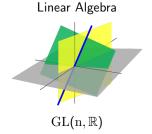




Number Theory

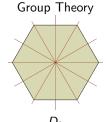
 $K \subseteq E$ fields

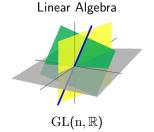




Number Theory

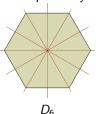
$$\mathcal{K} \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$



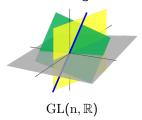


Number Theory

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

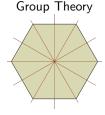


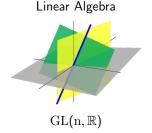
Linear Algebra



Number Theory

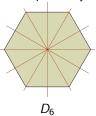
$$\mathcal{K} \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_{\rho} \subseteq \overline{\mathbb{F}_{\rho}(X)}$



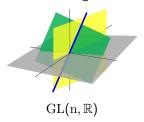


Number Theory

Differential Equations



Linear Algebra

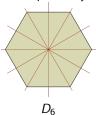


Number Theory

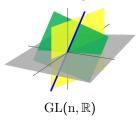
$$\mathcal{K} \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

Differential Equations $\Delta f = 0$

Group Theory



Linear Algebra

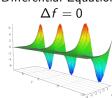


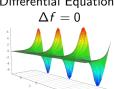
Number Theory

 $K \subseteq E$ fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

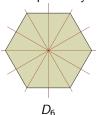
Aut(E/K)

Differential Equations

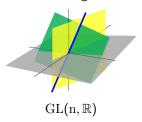




Group Theory



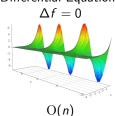
Linear Algebra

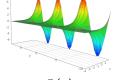


Number Theory

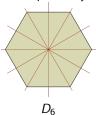
$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_{p} \subseteq \overline{\mathbb{F}_{p}(X)}$

Differential Equations

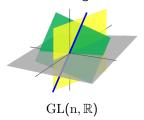




Group Theory



Linear Algebra

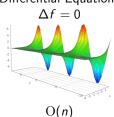


Number Theory

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

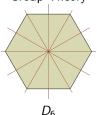
Aut(E/K)

Differential Equations

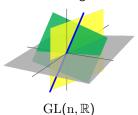


Differential Geometry

Group Theory



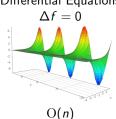
Linear Algebra



Number Theory

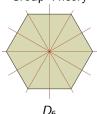
$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

Differential Equations

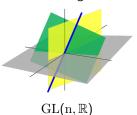


Differential Geometry

Group Theory



Linear Algebra

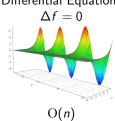


Number Theory

13/11/2025

$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

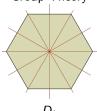
Differential Equations



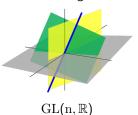
Differential Geometry

O(1, n)

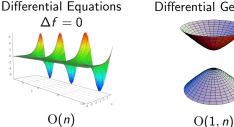
Group Theory



Linear Algebra



Differential Geometry



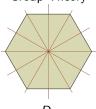
Number Theory

13/11/2025

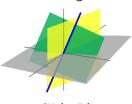
$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

Graph Theory

Group Theory



Linear Algebra



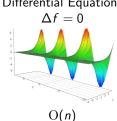
 $\mathrm{GL}(\mathrm{n},\mathbb{R})$

Number Theory

13/11/2025

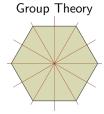
$$K \subseteq E$$
 fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

Differential Equations

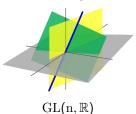


Differential Geometry

Graph Theory



Linear Algebra

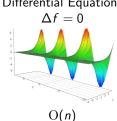


Number Theory

 $K \subseteq E$ fields $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ $\mathbb{F}_p \subseteq \overline{\mathbb{F}_p(X)}$

Aut(E/K)

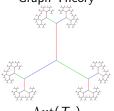
Differential Equations



Differential Geometry

O(1, n)

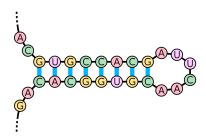
Graph Theory



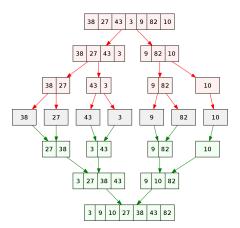
 $\operatorname{Aut}(T_d)$

Symmetry in Biology

Symmetry in Biology

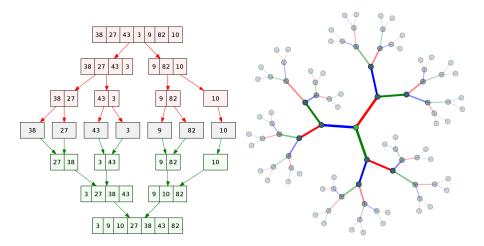


Symmetry in Computer Science



13/11/2025

Symmetry in Computer Science



And everywhere else...

Physics

Evolution

Music

Engineering

• • •

Information Technology